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ABSTRACT

This study was designed to determine methods for improvement

of shelf-life stability of intermediate moisture foods. It was

found that vitamin C is the most limiting vitamin from a nutritional

standpoint with its rate of destruction increasing with aw . Techniques

for microbial challenge studies were developed. It was found that

organisms- have a higher growth aw limit if the IMF is prepared by the

adsorption process and long times (about 6 months) are needed for

challenge studies. Several alternative antimycotic systems were found.

It was also found that the vegetative cells of pathogens have a maximum

heat resistance in the IMF aw range. Non-enzymatic browning is a

problem if reducing sugars are present. If glycols are in the formula,

the IMF should have as high an aw as possible. The reverse is true

if lipid oxidation occurs. In addition, to prevent rancidity, anti-

oxidants and a low 02 atmosphere are necessary. The package also must

be a good moisture barrier. The use of high temperature (450C) is

useful to shorten shelf-life testing time. New methods were also

found for accurate aw and pH measurement.
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SUMMARY AND RECOMMENDATIONS

This study was a continuation of Contract NAS 9-12560 which was

designed to determine methods for improvement of shelf-life stability

of intermediate moisture foods. Areas under investigation were

microbiological stability, nutritional losses, non-enzymatic browning,

validity of accelerated shelf-life testing and design of improved

techniques for measurement of physical properties of IMF. Based on

the results obtained, several recommendations were made for industrial

processors of IMF. These recommendations are as follows:

1. If nutritional claims are to be made with respect to vitamins,

ascorbic acid will be the vitamin limiting shelf-life. To

improve its stability, processors should:

a. Keep the aw as low as possible within IMF limits of palata-

bility.

b. Utilize a humectant to increase the aqueous phase viscosity

(such as glycerol) as it will reduce destruction rate.

c. Coat the ascorbic acid with an edible, non-water absorbing

impermeable layer.

d. Incorporate the ascorbic acid into a fat phase or icing.

e. Utilize packaging methodology to keep the oxygen level

as low as possible. The cost of extra packaging can be

balanced out against the cost of the needed high overrun

if no protection is used.
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2. Microbiological growth is a problem in IMF, especially molds.

With respect to microbes, to maximize shelf-life processors

should:

a. Utilize an adsorption process for water addition to IMF

as this gives a high limiting aw for growth of all

potential problem organisms. The extra cost of the process

must be balanced against the extra protection.

b. Not rely on short term microbial challenge studies. They

should be carried out for at least 6 months for IMF.

c. Utilize a humectant/inhibitor system to protect against

mold growth. The following systems are ideal at aw 0.85.

(1) Pfopylene glycol at 2% w/w

(2) Glycerol at 2% w/w

(3) The above at 1% with methyl paraben at 0.033% and

propyl paraben at 0.007%.

(4) Pimaricin at 0.002% if FDA approves

(5) Butane diol at 2% if FDA approves

These would all be effective at pH 4 to 6.

d. Systems that work against mold growth do not necessarily

inhibit Staphylococcus aureus, .a potential pathogen.

Specific challenge studies must be done using this organism.

e. Although the pH is important in controlling growth,

specific food acids themselves are not effective inhibitors.

In combination with specific humectants, and growth

inhibitors they reduce the amount needed to give protection.
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Processors should keep the pH of the food as low as

possible within palatability limits.

f. The heat resistance of vegetative cells, especially pathogens,

is at a maximum in the IMF aw range. Therefore, processors

should precook--pasteurize any ingredient at high or

low aw before combining into the final product.

3. Non-enzymatic browning is a serious chemical problem during

storage of IMF. To minimize deterioration:

a. Reducing sugars should not be utilized in the formula

unless absolutely dictated by cost and availability of

other humectants.

b. The ratio of sugar to protein is important. The upper and

lower limits should be determined.

c. Because of cost of proteins and availability many processors

freely substitute proteins. Their relative effect on

browning should be determined.

d. Browning has a rate accelerating factor of about 5 x for

each 100C rise. Thus, the processor should not heat

treat (such as pasteurize, extrude, etc.) the product

after combination of the sugar and proteins. They should

be cooked separately, cooled, then combined.

e. The temperature in the distribution chain should be

maintained as low as possible.

f. Although liquid humectants, such as glycerol, are useful

from an antimicrobial standpoint, and increase the aqueous

phase viscosity so as to slow down certain chemical reactions
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such as vitamin C destruction, they also act as a

dissolving phase for reducing sugars. This would then

allow non-enzymatic browning to actually increase in

rate as a decreases to near the monolayer. This means

processors should keep the aw as high as possible consistent

with other reactions and microbial deterioration. Good

moisture proof packaging is mandatory to prevent drying

out and an increased rate of deterioration.

4. Measurement of the water activity of IMF is important. Many

methods used today are inaccurate. A new simple low-cost

technique using moisture exchange with a standard dry cellulose

has been developed. It also allows use of large food sample

sizes to reduce the error caused by heterogeneity.

5. The measurement of the pH of dry and IMF systems has had

questionable methodology. In a comparison of various techniques,

it was found that direct measurement with a non-aqueous type

electrode was most reliable and accurate. In systems which

are too dry, the special dilution technique should be used

with the pH found by extrapolation to zero dilution on gran

plot paper.

6. To prevent deterioration during storage, all ingredients

should be precooked to destroy any enzymes present as these

will react in the IMF aw range.

7. To prevent rancidity, the product:

a. Should have antioxidants incorporated, including BHA/

BHT and the metal chelating agent, EDTA.
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b. Should have as high quality ingredients as possible.

c. A low oxygen atmosphere is a necessity and must be

used. The type of pouch and system used must be balanced

out with the shelf-life improvement.

d. As low an aw as possible should be used.

8. Textural changes which reduce palatability occur rapidly

during storage of IMF. To prevent them:

a. Deterioration from NEB must be prevented.

b. Lipid oxidation should be prevented.

c. A highly water-impermeable barrier should be used.

9. The use of accelerated shelf-life testing procedures is

possible with IMF with respect to chemical stability. It

is recommended that processors:

a. Utilize high temperature (40-450 C) to shorten shelf-life

testing time.

b. Several temperatures should be used (45, 40, 350C) so

that accurate predictions of the rates of deterioration

at room temperature are possible.
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Storage Stability and Improvement of Intermediate Moisture Foods

I. Introduction

A. Objectives

The purpose of the contract is to study the mechanisms of deterioration

of intermediate moisture foods (IMF) and find methods to improve their

shelf life. This is being conducted under Phase II of Contract NAS 9-12560.

Previous studies supported by NASA have shown that the main problems

in IMF stability were microbiological growth, lipid oxidation, non-enzymatic

browning and loss of nutritional value. The basic premise of the present

phase was to investigate each of these areas from the basis of how the

reactions are controlled by the amount of water in the IMF as measured

by both the moisture content and the thermodynamic availability of water.

Based on this recommendations would be made to improve shelf life. The

value of these results to the food processor would be immense, as present

IMF products for human consumption have a relatively short shelf life in

the marketplace. In fact, several have been withdrawn from the market

after only a few months testing.

These results would be most important for the main objective of this

study in the formulation for production of an IMF product to serve as a

meal replacement and emergency ration in the space shuttle and sky lab

programs. The intent is to have a single food item which is stable without

heat processing, refrigerated storage or freezing. This food item should

have a balanced nutrient composition supplying 25-35% of the daily needs,

be high in energy and require minimal handling or preparation. The

requirements are partially met by the same criteria used for IMF pet foods
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and the several human foods on the market, but as noted, stability is

a major problem. Through the study of the interaction of water with the

food components, recommendations could be made to minimize deterioration.

B. Literature Review

1. Water activity and moisture content: Effect on food quality

One of the primary attributes controlling the quality and

acceptability of foods in general is the water content. This is because

water is a major component of most foods,

With respect to reactions occurring in foods, water acts as

a solvent by dissolving chemical species and allowing them to diffuse

and react within it. The control of water content of food is thus a basic

food processing technique. This can be done by either drying or other

means of water removal. Water, however, does not have to be completely

removed and in the new intermediate moisture food technology, chemical

agents are added which bind the water to make it unavailable as a solvent.

Thus, an important attribute of food quality is not only the absolute

amount of water present, but also the physico-chemical state in which

water exists.

In most foods after processing, microbiological growth is

prevented during storage, however, chemical deterioration does occur

affecting quality. Usually the higher the aw, the faster the reaction

as seen in Figure 1. As has been shown by Rockland (1969) and reviewed

by Labuza (1971), the relationship between the loss of quality of the food

and the moisture content of the food is best represented by the term

"water activity" or "aw" as represented by the X axis of Figure 1.

Figure 1 shows the relative rates of deteriorative reactions as a function
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Figure 1. Stability Map of Foods as a FunctJ1i of a w
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of aw . As seen, most reaction rates increase as aw increases into the

intermediate moisture range (aw 0.6--0.9). At the higher end of this

range, microbes begin to grow. This is usually prevented by the addition

of some growth inhibitor.

Water activity, the availability of water for biological

and chemical reaction, is determined by its vapor pressure in a system

relative to that of pure water. It is defined by equation (1):

aw = /Po - E.R.H.

100

where aw  = water activity

p = partial pressure of water in food

po = saturation pressure of water at specified
temperature

E.R.H.= equilibrium relative humidity (%)

The basis of food processing is to prevent the microbiological

and chemical deterioration during processing and storage. Many methods

have been utilized to lower water activity or remove water from foods.

The basic principle of intermediate moisture foods is to lower aw below

where pathogenic organisms can grow but still have enough water present

for palatability. Since not enough water is removed to prevent chemical

deterioration, other means are needed to increase stability. It is the

purpose of this study to determine these means.

The physical-chemical factors responsible for the lowering

of water activity have been reviewed extensively by Van Arsdel and Copley

(1963) and Labuza (1968, 1971). Many different factors are responsible

for lowering water activities. First and most important is the effect

described by Raoult's Law (Equation 2):
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X . Nsolute (2)
s Nsolute + NH20

20 = - x s  
(3)

a = XH20 (4)

where X = mole fraction of solute
s

X20 = mole fraction of H20

NH20 = moles water

Nsolute = moles solute

y = activity coefficient

= 1 for ideal solutions

According to this law, water activity can be lowered either

by adding solutes or by removing water. When a solute such as sodium

chloride is dissolved in water, the availability of water is decreased.

This is partially due to the creation of a hydration shell of water around

a dissolved molecule. The water molecules are bound in one to several

layers. The relative vapor pressure of the water is decreased as a function

of the mole fraction of water to the total moles of water and solute in

solution. However, the relative effectiveness of several edible agents

used for lowering water activity appears to be different. Brockman

(1973) and Bone (1969) determined the effectiveness of various compounds

for adjusting water activity as seen in Table 1. An important aspect of

IMF technology is to find an aw lowering agent which will not impart a

high degree of flavor to the food. Several laboratories are now

investigating this.

The presence of small diameter pores is another factor in the

lowering of water vapor pressure; the capillary effect. As found
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TABLE 1

EFFECTIVENESS OF VARIOUS COMPOUNDS

FOR LOWERING WATER ACTIVITY

Solute 0.75 0.80 0.85 0.90

Sodium chloride 274 332 422 600

Glycerol 72 96 132 203

Glucose * 90

Sucrose * 49 71

Gelatin 23.4 26.7 32.1 40.2

Serum albumin 18.0 20.6 23.9 28.7

unit : grams of water per 100 grams dry solute at aw
* : solubility limiting

Reference - Brockman (1973)
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in practice and as predicted from the Kelvin equation, as the size of

a capillary is reduced, the vapor pressure of water is lowered. Bluestein

and Labuza (1972) have shown most of the capillaries in a food are of greater

than 10p size but as water is removed, the water present in small

capillaries (<100 X) comprises about 7-10% of the total water. This is

important only from the standpoint of finish drying and should not affect

IMF technology.

A third factor responsible for lowering of water activity

can account partially for the fact that hysteresis occurs. Labuza and

Rutman (1968) and Gregg and Sing (1967) have reviewed some of the basic

reasons for hysteresis. In general, hysteresis is based on the fact that

the amount of water bound at a given aw, can be affected by the method

of making the system. Thus, two systems of the same solids content at

the same aw can have a different amount of water present. Usually a

food prepared by desorption or removal of the water has the higher water

content at a given aw . This method of preparation can also affect stability

as shown in Phase I of this contract. Usually the higher moisture system

deteriorates faster.

The last factor controlling aw is the interaction of water

with solid surfaces as well as with molecules of high molecular weight.

Water interacts with the polar groups on surfaces and can be held very

tightly to form a monolayer. Water above this monolayer is usually thought

of as being the same as pure water in that it is totally available for

reaction. However, some interactions cause the rate to decrease as the

aw decreases to the monolayer value even though in a food the water has

a lower vapor pressure or aw than pure water as illustrated in the general

isotherm (Figure 2).
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This water plays an important role in the food since it still

acts as bulk water as related to:

a. Water acts as a solvent permitting the dilution and

mobilization of reactants and products.

b. Water may act as a reactant participating in specific

reactions.

c. Water may modify properties of reactants by hydrogen

bonding or hydration.

d. Water may modify the system by swelling the supporting

matrix and decreasing the viscosity in the aqueous phase.

The effect of aw on several deteriorative reactions will be reviewed below.

Labuza et al. (1970) and Labuza (1971) have discussed the

chemical stability of foods as a function of both moisture content and

water activity. These results are relative to the stability of IMF.

One of the major reactions limiting storage stability of

dehydrated foods is non-enzymatic browning through the Maillard reaction.

This is a reaction of reducing sugars under the influence of either free

amino acids or protein side-chains leading to darkening, off-flavor and loss

of solubility of proteins. Water plays an important role in the non-

enzymatic browning reaction in which it serves to dissolve the substrates

and mobilize them for reaction. Thus the reaction rate increases with

increasing moisture content. However, Sharp (1963) showed that the reaction

rate decreased at high water activity (>.60). Labuza et al. (1970) proposed

that this was most likely due to dilution effects since the moisture

content doubles or triples from aw 0.6 to 0.75 and thus the concentration

of the reactants is reduced. The real problem in IMF is that many of the
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needed aw lowering agents are reducing sugars and thus substrate is

present to cause the reaction.

Another reaction controlling the stability of food is lipid

oxidation. This is a complex reaction involving an unsaturated double

bond of a lipid and oxygen by means of a free radical mechanism. Recent

works showing the effect of aw have been done by Maloney et al. (1966);

Labuza et al. (1972)' Chou et al. (1973); Chou and Labuza (1974) and

Labuza and Chou (1974). They showed that there is a progressive antioxidant

effect of water up to 0.5 aw . Water hydrogen-bonds to the hydroperoxides

produced during the free-radical reaction. Thus the water ties up the

peroxides and slows the rate. In addition, water lowers the catalytic

activity of trace metals. The antioxidant effect increases until the

lipid interface is saturated with water.

As the water activity is increased into the intermediate

moisture range, oxidation of lipids increases again. Labuza and Chou

(1974) and Heidelbaugh and Karel (1970) found that because of increased

mobility and solubility, trace metals were able to move more rapidly to

oxidation sites and overcome the antioxidant properties of water. This

implies a very short shelf life for IMF if unsaturated lipids are present.

In addition, foods prepared by desorption methods oxidized at a faster

rate (Chou and Labuza, 1974: Labuza and Chou, 1974: Chou et al., 1973).

This was due to the greater mobility in the less viscous system.

A similar role of water occurs with respect to the stability

of many of the essential vitamins in foods. Karel and Nickerson (1964)

studied the effects of relative humidity, air and vacuum on browning

and loss of ascorbic acid in dehydrated orange crystals. The samples
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were divided into two groups, one stored in air and the other thoroughly

deaerated and stored under vacuum. The water activity was maintained

at several levels between 1% to 53.7% relative humidity. Their results

indicated that, under all conditions of storage investigated, the ascorbic

acid content of orange crystals decreased rapidly with time of storage.

Oxygen had little effect on the rates of destruction of ascorbic acid

but an increase in water content or aw increased the rate of ascorbate

destruction immensely.

Thompson and Fennema (1971) studied the rate of oxidation

of ascorbic acid in acetate buffer solutions at various concentrations,

and at temperatures ranging from +21 to -230C. The above-zero reaction

rate constants of any given sample decreased linearly with temperature.

The reaction rate constants of the samples which contained 85 mg ascorbic

acid per 100 ml of solution at pH 4.6 declined greatly when passing from

0 to -10C (partially frozen) and those of the samples which contained

0.074 mg ascorbic acid at pH 5.5 increased significantly. They explained

the results by two factors: first, the solubility of oxygen in a solution

decreases with increasing solute concentration; secondly, when a sample

is brought to solid-liquid equilibrium at a given sub-freezing temperature,

in initially dilute samples a greater amount of ice is formed and a greater

increase in solute concentration occurs than in initially concentrated

samples. Thus Karel and Nickerson's results (1964), the insignificant

differences in rates of ascorbic acid destruction between air and vacuum

stored samples, can be attributed to the poor solubility of oxygen in the

aqueous phase of water in dehydrated orange juice which has a very low

a, corresponding to the aw of frozen systems (Labuza, 1971).
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Kapsalis (1973) studied the role of water with respect to

thiamine and carotene. With respect to the thiamine, good retention

at 43.30 C was exhibited between 0 and 0.23 aw . Most likely not enough

water was present to dissolve the vitamin. In contrast, the carotene

content was adversely affected by dry conditions. Minimum retention

was shown at 0% RH, while higher retention was evident between 0.11 to

0.5 aw . This indicates the protective role of water towards lipid oxidation

since vitamin A is a fat soluble vitamin which is oxidized in a manner

similar to unsaturated fats. This is evidence that water may exercise

either a protective or adverse role in food stability, depending on the

particular component involved.

An important consideration with regard to moisture and aw

is the effect on the texture. Many dehydrated foods will become tough

during storage. The higher the a, of the food, the greater is the increase

in hardness of the product during storage making it more unacceptable.

Labuza (1973) explained that hardness may be caused by lipid oxidation

and non-enzymatic browning acting on proteins causing irreversible aggregation

and loss of water holding capacity.

The last area of concern, but a most important criterion for

quality, is microbiological growth in the intermediate moisture food system.

As seen in Figure 1, microorganism growth ceases at fairly high aw's (Scott,

1957; Troller, 1973). This is probably due to the shut down of enzyme

systems or the cessation of transport across the cell membrane. One

problem with IMF is that to obtain stability with respect to molds, the

a, must be reduced below 0.7. This, however, creates a dry, unpalatable

food. Thus, it is desirable to keep IMF products above this level; however,
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they must also be kept below aw 0.85. This is considered the upper

limit since it is the point at which the pathogenic species Staphylococcus

aureus can grow. To cope with this situation and produce an IMF of high

aw, processors have added various glycols which have antimycotic activity

as well as adding specific antimetabolites. Little information is

available, however, as to their relative effectiveness and their effect

on flavor and quality. In addition, in formulating their product,

processors might use the fact that the microorganisms present in foods

prepared by an adsorption technique (the lower branch of the hysteresis

curve in Figure 2) have a higher growth limiting aw (Labuza et al.,

1972a; Plitman et al., 1973).

Overall the safety factors, such as microbiological growth,

as well as the quality characteristics, such as the flavor, texture,

color and nutritional value of intermediate moisture foods, are markedly

influenced by the water content and water activity as determined by the

various reactions related above. The food industry must obtain information

to determine the optimum moisture content and water activity in each food

in order to use it in controlling the stability and acceptability of the

food and to determine means to prevent or slow the deteriorative processes.

C. Specific Objectives

1. Determine the rate of ascorbic acid loss in IMF systems as

a function of aw and moisture content.

2. Examine the microbiological stability of IMF with respect to:

a. Method of preparation - moisture hysteresis

b. Influence of glycols and antimycotics on growth

d. Influence of pH and various acids on growth
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d. Influence of pasteurization temperatures on heat resistance

as a function of aw .

3. Study the mechanism and affect of a, and water content on the

kinetics of non-enzymatic browning in model systems in the IMF range.

4. Develop a simple system for a, measurement in the high aw range.

5. Develop a method for pH determination of IMF.

6. Study the stability of an IMF based on granola, peanut butter

and sugar.

7. Determine the applicability of accelerated temperature on

predicting the stability of an IMF at room temperature.
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DESTRUCTION OF ASCORBIC ACID AS A FUNCTION OF WATER ACTIVITY

IN INTERMEDIATE MOISTURE MODEL SYSTEMS



II. Destruction of Ascorbic Acid as a Function of Water Activity in

Intermediate Moisture Model Systems.

A. Cellulose-Glycerol Model System Study

1. Introduction

It is well-known that some important attributes which control

quality of food in storage are both the absolute amount of water in the

food and the physico-chemical state in which water exists. As has been

shown by many investigators (Stitt, 1958; Labuza, 1968; Bone, 1969),

the relationship between the loss of food quality and the moisture content

is best represented by the term "water activity".

In studying intermediate moisture foods, Labuza (1971) and

Labuza et al. (1972a) found that at the same water activity, the rate of

several chemical reactions can be very different depending upon whether

an adsorption or a desorption process was involved in preparing the system.

They reported that unsaturated lipids oxidized faster for systems prepared

on the desorption branch of the hysteresis loop which contain a higher

moisture content than for adsorption systems at the same water activity.

The effect was postulated to be due to the increased mobility of reactants

and lower viscosity in the more dilute aqueous phase of the desorption

system. Chou et al. (1973) confirmed the higher reaction rate for lipid

oxidation in desorption systems with both high and low trace metal content.

Labuza et al. (1972a) also found a difference in limiting aw for growth

of microorganisms depending on which branch of the isotherm the food was on.

With the advent of increased interest in nutrition on the part

of both consumers and food processors, it is becoming increasingly important

to understand what happens to the nutritional value of food products under
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storage. Karel and Nickerson (1964), Jensen (1967) and Vojnovich and

Pfeifer (1970) studied the stability of ascorbic acid in various dehydrated

foods as a function of water content up to about aw 0.5.

Karel and Nickerson (1964) studied the effects of relative

humidity on loss of ascorbic acid in dehydrated orange juice. The samples

were divided into two groups, one stored in air and the other thoroughly

deaerated and stored under vacuum. The water activity was maintained

at 1%--53.7% relative humidity. Their results indicated that, under

all conditions of storage investigated, the ascorbic acid content of

orange crystals decreased linearly with time of storage. Oxygen had

little effect on the rates of destruction of ascorbic acid but an increase

in water content or aw increased the rate of ascorbate destruction.

Jensen (1969) reported similar results on loss of ascorbic acid in seaweed

and seaweed meal. The ascorbic acid was very sensitive to increase

in moisture content. Even at 40 C almost all the ascorbic acid was lost

after four months of storage in the sample containing 25% moisture.

With 10% moisture in the sample, approximately one-third of the ascorbic

acid was still present in the meal after one year at 4 0C. The results

of these studies are shown in Table 1.

Vojnovich and Pfeifer (1970) studied the stability of ascorbic

acid in blends with wheat flour, corn-soya-milk, and infant cereals at

various temperatures and moisture contents. Since data from all storage

tests can be represented by straight lines on semilog plots, the kinetics

covering the rate of destruction of ascorbic acid in all cereal blends

are similar to those of a first order reaction. Destruction rates and

activation energies were calculated as shown in Table 2. It is hard to
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TABLE 1

DESTRUCTION RATES OF ASCORBIC ACID IN DEHYDRATED FOOD PRODUCTS

Product H20 content ToC Half life Ea
_H20/100g solids (days) (Kcal/mole)

Seaweed 11.1 25 105
*1 10 182 7.65

4 310

17.6 25 45
10 120 13.1
4 240

33.3 25 9.6
10 10 30.3
4 15

Orange juice 11.0 37 20.7
*2

7.4 37 28.4

3.2 37 85.7

1.1 37 174.6

*1 from Jensen (1969)

*2 from Karel and Nickerson (1964)
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TABLE 2

DESTRUCTION RATES OF ASCORBIC ACID

IN VARIOUS DRY CEREAL BLENDS

Water Content T (oC) K (day- 1) Ea (Kcal)
mole

11.8% 45 8.74 x 10- 2

37 3.20 x 10-2 34.61
26 3.00 x 10- 3

10.4% 45 2.94 x 10- 2

37 8.29 x 10- 3  34.87
26 1.29 x 10- 3

o
a 8.0% 45 1.86 x 10 - 3

w37 8.57 x 10- 4  18.82
26 2.86 x 10-

14.6% 45 1.96 x 10-2

37 1.86 x 10- 3  37.68
26 4.29 x 10- 4

13.7% 45 7.00 x 10- 3

37 1.29 x 10- 3  30.920 26 2.86 x 10- 4

12.9% 45 2.14 x 10- 3

37 5.71 x 10- 4  27.14
26 1.43 x 10- 4

10.7% 45 5.81 x 10- 2

37 4.59 x 10- 2  4.85
26 3.59 x 10- 2

ca
7.0% 45 4.94 x 10- 2

37 2.77 x 10-2 12.47
26 1.46 x 10- 2

5.0% 45 2.91 x 10- 2

37 1.53 x 10- 2  14.81
26 6.71 x 10- 3

From Vojnovich et al. (1970)
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conclude the effect of water content on activation energy from their

results. The table shows that in corn-soya-milk the activation energy

increased with increasing water content. However, in mixed cereal, the

activation energy decreased with increasing water content. Wanninger

(1972) proposed a mathematical model for predicting stability of

ascorbic acid and tested his model with the data of Vojnovich and Pfeifer.

A model assuming that water affects the activation energy was tested

and rejected. He concluded that water did not affect the activation

energy for the data. However, the data in Table 2 show that it does.

The problem lies in that the rates in some cases are so slow that the

rate constant k can be in large error thus giving a larger error to Ea-

There is a marked similarity between the effect of water

on the destruction of ascorbic acid and the effect on non-enzymatic

browning. For example, Mizrahi et al. (1970) reported a decrease in

activation energy with water content in dehydrated cabbage.

These studies show a lack of good data in the higher a,

range, especially with respect to intermediate moisture foods. This

study was designed to obtain that data and to determine the effect of

sorption hysteresis on destruction of ascorbate.

2. Materials and Methods

a. Ascorbic acid measurement (Horwitz, 1965)

(1) Reagents

(a) Metaphosphoric acid--acetate acid stabilizing

extracting solution. Dissolve, with shaking, 15 g glacial HPO 3

pellets or freshly pulverized stick HPO 3 in 40 ml HOAc and 200 ml

H20; dilute to 500 ml and filter rapidly through fluted paper into
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glass stoppered bottle. (HPO3 slowly changes to H3P04, but if stored

in a refrigerator solution remains satisfactory 7-10 days).

(b) Ascorbic acid standard. USP reference L-ascorbic

acid; keep cool, dry, and out of direct sunlight in desiccator.

(c) Indophenol standard solution. Dissolve 50 mg

2,6-dichloroindophenol Na salt (Eastman No. 3463), that has been

stored in desiccator over drierite, in 50 ml H20 to which has been

added 42 mg NaHC0 3; shake vigorously and when dye dissolves dilute

to 200 ml with H20. Filter through fluted paper into an amber glass

stoppered bottle. Keep stoppered, out of direct sunlight and store

in refrigerator. Decomposition products that make the end point

indistinct occur in some batches of dry indophenol and also develop

with time in stock solution. Add 5.0 ml of metaphosphoric acid-

acetic acid extracting solution containing excess ascorbic acid to

15 ml dye reagent.

(2) Standardization

Weigh accurately 100 mg of the reference standard

ascorbic acid, transfer to 100 ml glass stoppered volumetric flask and

dilute to mark with the HPO 3-HOAc reagent. Standardize indophenol solution

at once as follows: Transfer three 2.0 ml aliquots of the ascorbic acid

solution to each of three 50 ml Erlenmeyers containing 5.0 ml of the

HP03-HOAc reagent. Titrate rapidly with the indophenol solution from

10 ml buret until light but distinct rose-pink color persists at least

5 seconds. Similarly titrate 3 blanks composed of 7.0 ml of the HPO 3-

HOAc reagent. After substracting average blanks from standardized titrations,

calculate and express concentration of indophenol solution as mg ascorbic
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acid equivalent to 1.0 ml reagent.

(3) Sample procedure

(a) Transfer the sample from storage into 100

ml volumetric flask.

(b) Add about 80 ml HPO 3-HOAc reagent and shake

on a reciprocal shaker for 10 minutes.

(c) Filter under suction to remove solid residue.

(d) Wash with 60 ml HPO 3-HOAc and make up to 150 ml.

(e) Pipette out three 5 ml filtrate into each of

three 50 ml Erlenmeyer flasks containing 5 ml of HPO 3-HOAc reagent.

(f) Titrate with the indophenol solution.

E = (mg AA) x 2
100 ml dye

ml dye x E
mg AA/100g = x Dx 100

g sample

where D = dilution factor

E = equivalent factor (mg AA/ ml dye)

AA = ascorbic acid

b. System preparation

The model system used is similar to that used for the

lipid oxidation studies by Chou et al. (1973). The system composition

is shown in Table 3. Several methods of preparation were used.

(1) Direct mixing (desorption process)

To prepare the model system, glycerol and corn oil

were first mixed in a beaker using a glass stirring rod. To this the

solid support (microcrystalline cellulose) was added and mixed thoroughly.

The amount of water (buffer solution) necessary to achieve the desired
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TABLE 3

COMPOSITION OF THE MODEL SYSTEMS USED FOR THE STUDY OF ASCORBIC ACID DESTRUCTION

aw
Component 0.32 0.33 0.51 0.52 0.67 0.75 0.82 0.84 0.88 0.93

Corn oil 10 10 10 10 10 10 10 10 10 10

Glycerol 40 40 40 40 40 40 40 40 40 40

Cellulose 50 50 50 50 50 50 50 50 50 50

Water * (DM)a 5.0 5.2 9.6 10 20 31 49 57 77 102

Water * (DH)b 4.7 4.9 8.3 9.4 18.2 26.0 36.1 43 56.1 73.1

Ascorbic acid ** 300 300 300 300 300 300 300 300 300 300

* buffer system
** mg

a Direct mix system

b Dry humidified system



water activity was then added. The amount of water needed was obtained

from Figure 1. The buffer system used is shown in Table 4. Both a

citrate-phosphate buffer (A) and a phosphate buffer (B) were tested.

This system was designated as the direct mix system (DM)

and corresponds to the upper branch in the sorption hysteresis isotherm

loop. Although the water was added to the dry support, a previous work

(Chou et al., 1973) showed this method to be no different than adding

excess water and desorbing it in a desiccator. Zero time for the DM

system was taken as the time at which the samples were put into desiccators

at the water activity to which they were prepared.

(2) Humidified system (adsorption process)

(a) Freeze-dried and rehumidified system (FDR)

The direct mix samples were freeze-dried for

20 hours at room temperature and placed in desiccators containing-

saturated salt solutions giving the relative humidity desired. Table

5 shows the various salt solutions used to attain these humidities.

The desiccators were evacuated until the saturated salt solutions

boiled. However, precautions were taken to prevent the samples from

becoming contaminated. The samples were held in the desiccators

for 48 hours or until no weight changes were observed. Zero time

for this system was taken as the time when the samples were equilibrated.

This system was then designated as the freeze-dried and rehumidified

system (FDR).

Chou et al. (1973) measured the glycerol content

of the system after freeze-drying. The results showed that a small

portion of the glycerol in the system was lost and thus sample composition
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TABLE 4

BUFFER SYSTEM FOR ASCORBIC ACID STUDY

(A). Na 2HPO4 -- Citric Acid Buffer

pH ml of 0.2M Na2HPO4  ml of 0.1M Citrate

4.0 7.71 12.29

5.0 10.30 9.7

6.0 12.63 7.37

7.0 16.67 3.53

(B). Phosphate Buffer

pH ml of 0.2M Na2HP2 ml of 0.2M NaHPEO4  ml Water

6.0 12.3 87.7 100
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TABLE 5

RELATIVE HUMIDITY VARIATION WITH

TEMPERATURES FOR SATURATED SALT SOLUTIONS

% Relative Humidity
Salt 25 0 C 35 C 40 uC 45'C

MgC12  33 32 31 31

Mg(N03)2  52 51 51 50

Cucl2  67 67 67 67

NaC1 75 75 75 75

KC1 86 84 83 82

K2CrO4  87 84 82 81

BaCl 2  90 88 87 --

KNO3  93 91 89 88

Na2PO4 97 93 91 --

Pb(NO3)2  97 96 95 94
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was changed slightly.

(b) Dry-mixed and humidified system (DH)

To prevent the loss of the glycerol because

of freeze-drying, water (buffer in which ascorbic acid was dissolved)

and microcrystalline cellulose were first mixed and were then freeze-

dried at room temperature for 20 hours. The dry samples were then

mixed with the necessary glycerol and corn oil. The dry-mixed samples

then were humidified to the same aw as the FDR system.

c. Aw and moisture measurement

Water activities were determined using the manometric

technique at the various water contents in both the desorption system

and adsorption system at room temperature. The water content was measured

by the methanol extraction-GLC technique reported in Phase I, NAS 9-12560.

A 3.0 gram sample was weighed accurately in a 125 ml Erlenmeyer flask.

80 ml of anhydrous methanol was added and the moisture content was measured

by a Hewlett-Packard thermal conductivity gas chromatograph. Separation

of the methanol-water mixture was accomplished on a Poropak Q column

operated isothermally at 110 0C. The isotherm as shown in Figure 1 shows

the hysteresis effect.

d. NMR measurement of adsorbed aqueous phase

An analysis of the Tl, spin-lattice relaxation time

of water protons, was made on samples prepared by DM and DH methods.

A pulsed Nuclear Magnetic Resonance Analyzer (Praxis Corp.) was used

at the Pillsbury Research and Development Labs., Minneapolis, Minnesota.

The sample size used was approximately 35 g. Measurements

were made at 30 MHz and 300 C. Amplitudes for the first 900C pulse and
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second 90"C pulse were made after delay time (T) was set. Measurements

were repeated for different values of T.

- To determine the T1, Equation (1) which is recast from

the Bloch equation can be used (Becker, 1969):

In (A - AT) = In A- - T/T 1  (1)

where AT = initial amplitude of the free induction

delay following the 900 pulse at time T

A- = limiting value of AT for a very long

interval between the first and second pulse.

The difference between the first pulse and second pulse was plotted

against delay time on semilogarithmic paper and TI was determined from

the slope of the plot.

3. Results and Discussion

a. Ascorbic acid destruction as a function of pH and trace

metal catalysis at aw 0.75

Experiments were prepared to determine the.effects on

the reaction of the pH and buffer system which would be used in the model

system. Model systems were prepared to an aw of 0.75 and held at 35
0 C.

The results are shown in Figure 2 for Run 1 for the control and the various

buffers and for Run 2 in Figure 3 where EDTA at 100 ppm total solids basis

was added to the buffers. As seen in Figures 2 and 3, for buffer (A)

the rate of destruction of ascorbic acid increased as pH increased up

to pH 6.0 and then the rate decreased again. In both systems, buffer

(B) at pH 6.0 was more protective than buffer (A). The rates of destruction

determined from these data are shown in Table 6.
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TABLE 6

RATE CONSTANT FOR ASCORBIC ACID

DEGRADATION AT 350 C AND aw 0.75

Run 1 Run 2 (EDTA added)

pH Buffer k(day- ) Buffer k(day-)

4 A 5.62 x 10-1 A 1.43 x 10-1

5 A 8.84 x 10-1 A 3.64 x 10-1

6 A 8.89 x 10-1 A 8.47 x 10-1

7 A 2.71 x 10-1 A 2.21 x 10-1

6 B 2.93 x 10-1 B 4.89 x 10- 2

no
buffer 4.85 x 10- 2

Buffer A - citrate-phosphate buffer
Buffer B - phosphate buffer
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Weissberger et al. (1944) and Khan et al. (1967) reported

that the oxidation rate of the ascorbic acid is dependent upon the concentration

of monovalent ascorbate ion in the presence of metals since monovalent

ascorbate ion is only subject to metals. On the assumption that the rate

is governed by concentration of ascorbate ions (AH-) and metals ions at pH

values close to neutrality, the concentration of monovalent ascorbate ion

would be increased (pK1 = 4.12). Thus the rates should increase with

increasing pH.

Finholt et al. (1963) and Flesh (1960) showed that the

rate of degradation of ascorbic acid was also increased with an increase in

total phosphate concentration. They assumed that trace metal impurities

or the buffer components caused anenhanced autoxidation of ascorbic acid

in phosphate buffer. It is also known that citric acid has an ability

to complex metals.

According to the composition of buffer system (A), as

shown in Table 4, the amount of phosphate increases and the amount of

citric acid decreases with an increase in pH. The combination of these

factors would then explain the increase in the rate of oxidation of ascorbic

acid up to pH 6.0.

Over 50% of the citric acid is present as a trivalent

ion at pH 7 because the pKa of citrate is 6.4. Uprety and Revis (1964)

showed that the protecting effect of citric acid was more profound at

pH 6.5 than at lower pH. The decreased rate at pH 7 may then be due

to the fact that trivalent ions may have much more ability to complex

trace metals.
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Table 6 shows that the rate of degradation between

the two buffer systems and distilled water were significantly different.

At the same pH the ascorbic acid in the phosphate buffer system was retained

more than in the citrate-phosphate buffer system. In these particular

buffers, the different rates at the same pH may be due to the concentration

of phosphate or impurities, as Flesh (1960) suggested.

Table 6 and Figure 3 show the effect of EDTA, a chelating

agent. The retention of ascorbic acid was improved by adding 100 ppm of

EDTA at all pH values, as the trace metals present were chelated and

thus were made unavailable for the reaction. Thus pH and buffer solutions

are also important factors influencing the rate of the oxidation of ascorbic

acid. From these results buffer (B) was chosen since it would not cause

any unusual effects on the rate of reaction.

b. Effect of aw and method of preparation on ascorbic acid

destruction in model systems

Run 3

In order to study the effects of water activity on the

rate of destruction of ascorbic acid and the activation energy of the

reaction with respect to moisture hysteresis experiments were designed

in a simplified model system utilizing the buffer (B) system as discussed

previously to prevent any complex interactions. The ascorbic acid levels

were measured as a function of time at 23, 35 and 400 C in the range of

aw 0.32--0.84. The results were calculated as the fraction of ascorbic

acid remaining, as shown in Figures 4, 5 and 6. The calculated destruction

rate constants are shown in Figure 7 as a function of aw .
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Figure 7 summarizes the results of the ascorbic acid

destruction rate as a function of aw, temperature and hysteresis. The

results show the general increase in rate with aw as in agreement with

others (Gooding, 1963; Karel and Nickerson, 1964; Jensen, 1969; Vojnovich

and Pfeifer, 1970). It is not surprising, however, that at similar a,

values for the foods the destruction rates of ascorbic acid in the model

system do not fall in the same range. This could be due to various

interactions with other components, especially trace metals present in

foods. The results also show that the ascorbic acid was destroyed more

rapidly in the direct mix system (DM) than in the humidified system (DH).

This possibly may be explained by the affect of method of preparation.

The sorption curve for ascorbic acid in Figure 8 indicates that it does

not go into solution readily until an aw of 0.85 during an adsorption

test. The lower rate can possibly be attributed to the lower amount in

solution. However, glycerol and cellulose in model system would take up

moisture and dissolve ascorbic acid. The kinetics also follow a first

order reaction based on the total ascorbic acid. The kinetics thus must

be controlled by the amount of water available and the water activity,

not the solubility of ascorbate.

Run 4

An additional study was made over a wider temperature

range (23 to 45 C) to verify previous results and get an accurate measurement

of the activation energy of the reaction.

Since the ascorbic acid would be rapidly destroyed at

450C, the systems were equilibrated at 100 C initially, then transferred

to the higher temperature. The results are plotted in Figures 9, 10 and 11
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for the three temperatures. As seen, the rate of destruction closely

follows a first order reaction as in Run 3. The rate constants are

shown in Figure 12. The half lives calculated from these rate constants

are presented in Table 7. The results compare very closely to those

found in Run 3, the slight difference is probably due to slight differences

in the amount of trace metals present. As seen, the rate increases as

a increases.
w

Run 5

Previously it was shown that as moisture content increased

in both the DM and DH systems, the rate of ascorbic acid loss increased

proportionally. Miller et al. (1949) and Kyzlink et al. (1970) showed

no dilution effect on the reaction rate at high water activities. From

these studies, therefore, it was postulated that the increase in rate

observed in the model systems was due to an increase in metal ion and

ascorbic acid mobility. It was also postulated that most likely at very

high moisture levels, no dilution effect would occur as was also found

in the other studies.

Additional systems were prepared by both the DM and the

DH methods to see the dilution effect on the destruction rates of ascorbic

acid at aw 0.88 and 0.93. The loss of ascorbic acid was measured at

23, 35 and 450C. The results of ascorbic acid loss are shown in Figures

13 and 14. As seen, a first order reaction is still obeyed.

The overall half lives at these aw's as compared to the

lower ones are shown in Table 7. This shows a continuing decrease in half

life with increasing aw or water content at these aw's. Based on a first

order reaction, there should be no change in half life with a change in
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Figure 12. Rate Constants of Ascorbic Acid Degradation as a

Function of a, at 23, 35, 450C.
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TABLE 7

HALF-LIFE IN DAYS FOR ASCORBIC ACID DESTRUCTION IN MODEL SYSTEMS

230C 350C 400C 450C

a Run DM DH FDR DM DH FDR DM DH DM DH FDR

0.32 3 36.5 49.5 --- 9.0 11.1 --- 5.9 6.9 --- --- ---

4 38.9 55.4 --- 11.2 13.3 --- --- --- 3.5 4.2 ---

0.51 3 18.2 21.3 --- 5.6 5.6 --- 2.8 3.8 ---

4 22.4 25.2 --- 5.8 6.2 --- --- --- 1.5 1.7 --

0.67 3 7.4 9.8 --- 2.1 3.4 --- 1.2 2.0 --- ---

4 6.9 11.2 --- 2.9 3.6 --- --- --- 0.9 1.2 ---

6 --- --- 27.5 --- --- 6.9 --- --- --- --- 2.4

0.75 3 2.8 4.8 --- 0.8 1.4 --- 0.5 1.0 ---

4 2.8 4.0 --- 0.8 1.3 --- --- --- 0.2 0.6 ---
6 --- --- 14.8 --- --- 3.2 --- --- --- --- 1.2

0.84 3 0.9 1.8 --- 0.3 0.6 --- 0.18 0.3 --- ---

4 1.1 1.9 --- 0.3 0.5 --- --- --- 0.1 0.2

6 --- --- 6.9 --- --- 2.5 --- --- --- --- 1.0

0.88 5 0.56 1.2 --- 0.22 0.38 --- --- --- 0.08 0.17

0.93 5 0.39 0.83 --- 0.16 0.20 --- --- --- 0.05 0.08

DM = direct mix - desorption
DH = dry mixed and humidified - adsorption

FDR = freeze-dried rehumidified - adsorption
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Figure 13. Loss of Ascorbic Acid at an aw of 0.88 and 23, 35 and
450C with Respect to Hysteresis. DM = desorption, DH = adsorption.
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concentration. Thus as water content increases even if dilution occurred,

all measured half life should remain constant, not decrease as seen.

However, the decrease is very small at the high aw . Thus either a dilution

effect is not occurring up to these aw's or some other mechanism is

occurring which affects the rate more strongly. Under the conditions

in this study, the rates were so rapid that higher moisture systems could

not be studied.

Run 6

An additional system, the FDRwas prepared by mixing

all the components together with glycerol and corn oil and freeze-drying

for 24 hr. at room temperature in order to see another effect of the

method of preparation. These were then humidified to equilibrium relative

humidities. The results of moisture vs. aw are compared to the DM and DH

systems in Table 8. As seen, the FDR gives slightly higher moisture contents

than the DH system. The reason is not certain. However, it was noticed

that samples after freeze-drying were very porous and can possibly hold

more water thus giving a slightly higher water content at the same aw.

Samples were stored at 23, 35 and 450C and destruction

rates of ascorbic acid were measured. Figures 15 and 16 show the results

for ascorbic acid loss at the three temperatures. The calculated half

lives are shown in Table 7 as compared to the DM and DH systems. As seen,

the half life for the FDR system is significantly higher than the other

systems, yet the moisture is in between the DM and DH systems. The reason

is not known except that some glycerol was lost in the preparation and

may have an effect on the mobility, giving the system a higher aqueous

phase viscosity.
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TABLE 8

MOISTURE DATA (g H20/g solids)

Ascorbic Acid Systems

aw  DM * DH * FDR *

0.32 3.4 3.0

0.33 3.6 3.2

0.51 9.6 8.3

0.52 10.0 9.4 ---

0.67 20.0 18.2 19.6

0.75 31.0 26.0 29.6

0.82 49.0 36.1 43.5

0.84 57.0 43.0

0.88 77.0 56.1 ---

0.93 102.0 73.1 ---

* DM - direct mix
* DH - dry mixed & rehumidified
* FDR- freeze-dried rehumidified
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c. Mechanisms of action of aw and moisture on ascorbic

acid destruction

The previous results show that the mechanism of action

of an increase in aw is to increase the rate of degradation of ascorbic

acid. The mode by which this occurs can be very complex. First, the

mechanism of the oxidation of ascorbic acid might possibly be changed

with respect to aw . Secondly, water may act to dilute the concentration

of ascorbic acid as aw increases, thereby reducing the rate and thirdly,

an increase in water content may make the reaction easier if the aqueous

phase becomes significantly less viscous and diffusion is enhanced. If

water plays a role in affecting the rate of oxidation, the effect of

hysteresis can be used to answer these three questions.

To examine the possible mechanism change with increasing

aw, the rate constants were plotted against the reciprocal of absolute

reaction temperature in a semilog plot. These are shown in Figures 17

and 18 for Runs 3 and 4. The slope of the line is related to the activation

energy of the reaction. The measured activation energies are shown in

Table 9. In order to test the hypothesis that the activation energy is

the same at the various aw's, a one-way classification test was used

(Snedecor and Cochran, 1971). Since experiments were conducted at 23, 35

and 40°C for Run 3, and 23, 35 and 450 C for Run 4, the results from these

two experiments can be considered duplicate. Table 10 shows the usual

analysis of variance table with general computing instructions for a

class with n observations per class. The symbol T denotes a typical

class total, while G = ET = EEX is the grand total.
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TABLE 9

ACTIVATION ENERGIES FOR ASCORBIC ACID DESTRUCTION

(Kcal/mole)

Run 3 Run 4 Run 5 Run 6

a DM DH DM DH DM DH FDR

0.32 20.0 21.5 20.5 21.9

0.51 19.2 19.0 22.6 22.6

0.67 19.0 16.7 17.3 19.0 --- --- 19.5

0.75 19.1 17.8 21.9 16.4 --- --- 20.5

0.84 16.4 18.2 20.4 18.4 --- --- 17.5

0.88 --- --- --- --- 17.2 17.6 ---

0.93 --- 18.4 19.9 ---
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TABLE 10

FORMULAS FOR CALCULATING THE ANALYSIS OF VARIANCE

Source of Variation Degree of Freedom Sum of Square Mean Square

Between classes (a ) a - 1 (ET2/n) - C S.S/a-1

Within classes (a w )  a (n-1) Total S.S - S.S S.S/a(n-1)

of between aw

Total an - 1 EEX 2 - C

where X = Ea (Kcal/mole)

n = observations per class
C = G2 /an = (ECX) /an

a = number of classes

S.S = sum of square

T = EX

F = Treatment mean square Mean square between classes Mean square between aw
Error mean square Mean square within classes Mean square within a,



The table provides a basis for the F test. This is

a test of the hypothesis that the means for the various aw's are identical.

If the calculated F value is smaller than the F value from the Table

for the distribution of F, the hypothesis can be accepted (Snedecor and

Cochran, 1971).

The mean X and the sum of squares of deviations as

calculated for the DM and the DH systems are shown in Tables 11 and 12.

The calculated F value for the DM systems is 0.808, as shown in Table

11. The mean square between aw's is less than that within aw . Therefore,

there is no evidence of differences among the means for the DM system.

As shown in Table 12, the calculated F value for the DH system is 3.94.

The value at the 5% level is 5.19 (the calculated F < F0.05 ). Thus, from

the distribution specified in the hypothesis (F distribution) there is

less than 5 in 100 of a sample having a larger value of F. Thus, it can

be concluded that the means for the DH system as well are the same; the

activation energy would not be affected by changing the water activity.

This analysis shows that water in the model system

does not have any real effect on the activation energy, while it does in

foodsas was shown in Table 2. However, the amount of data collected

for these foods is very small and thus may be suspect. The overall measured

Ea for Runs 3 and 4 is 20.2 + 2 Kcal/mole. The activation energies for

Runs 5 and 6 as shown in Table 9 are also in the same range. Thus, it can

be concluded that an increase in aw does not change the reaction mechanism.

To show the effect of water content on the rate, the

half lives were plotted against moisture content for both preparation

methods from Runs 4 and 5 as shown in Figure 19. This shows a decrease
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TABLE 11

ANALYSIS OF VARIANCE FOR THE DM SYSTEM IN RUN 3 and 4

a.

0.32 0.51 0.67 0.75 0.84 Total

Ea in Run 3 20.03 19.18 19.02 19.07 16.39

Ea in Run 4 20.47 22.63 17.30 21.90 20.44

EX 40.50 41.81 36.32 40.97 36.83 196.43

(EX)2/n 820.13 874.04 659.57 839.27 678.23 3871.23

EX2 820.22 879.99 661.05 843.28 686.43 3890.96

EX2 - (EX)2/n 0.097 5.95 1.48 4.0 8.20 19.73

Source of variation Degree of Sum of Square Mean of Square

Freedom

Between aw  4 12.76 3.19

Within aw  5 19.73 3.95

Total 9 32.49

3.19
F = = 0.808

3.95
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TABLE 12

ANALYSIS OF VARIANCE FOR THE DH SYSTEM IN RUN 3 AND 4

0.32 0.51 0.67 0.75 0.84 Total

E in Run 3 21.49 18.98 16.73 17.76 18.23a

Ea in Run 4 21.90 22.64 18.93 16.44 18.40

EX 43.39 41.62 35.66 34.20 36.63 191.50

(EX)2/n 941.35 866.11 635.24 584.69 670.88 3698.97

EX2 , 941.43 872.81 638.24 585.69 670.89 3709.06

EX2 - (EX) 2/n 0.08 6.69 2.42 0.87 0.01 10.08

Source of Variation Degree of Sum of Square Mean of Square
freedom

Between aw  4 31.74 7.93

Within a ,  5 10.08 2.02

Total 9 41.83

7.93
F 2.02 3.95 F = 5.19 (from F distribution)2.02 0.05
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Moisture Content with Respect to Hysteresis.
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in half life as moisture content increases. The same pattern was shown

for Run 3, however, the results from the FDR experiment did not fit on

the same curveindicating the glycerol loss. Based on a first order

reaction, there should be no change in half life with a change in initial

concentration of the reacting species. Thus, as water content increases,

if dilution of the reactant species occurs, all measured half lives should

remain constant not decrease as seen. However, a dilution effect may

actually be occurring but could be masked by some other mechanism which

would cause a rate increase. This is suspected since above a critical

moisture value, the rate increase is very small and becomes almost constant.

Miller and Joslyn (1949) showed that the half life of ascorbic acid in

sucrose, glucose and fructose solutions decreased with an increase in

water activity going from 0.96 to 1.0. The data of Kyzlink and Curda

(1970) at pH 4 using sugar solutions (aw 0.96 to 1.0) also show an increase

in rate of destruction or decrease in half life. At 200C, the half life

went from 0.3 days at aw 0.965 to 0.1 days at an aw of 1.0. This would

seem to fit in very well with what is shown by the present experiments

in that the dilution effect is small or is masked by some other factor

such as a change in the mobility of species in the adsorbed aqueous phase.

The remainder of the explanation for the effect shown

is that the rate increase with a or moisture content must be related to

mobility of the reaction species in the aqueous phase. A mobility factor

can be empirically related to rate constants through the theory of reaction

kinetics. The increased rate in this study could be due either to increased

mobility of trace metal catalysts or of ascorbate itself. An inspection

of Figure 19 shows that all the data fit on the same curve, that is, the
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half lives for both preparation systems are not parallel, but are direct

functions of the total water. Thus, it was postulated that the effect might

be due to a decrease in viscosity and thus increased mobilization of the

reaction species. The addition of water increased the rate constant

because the ascorbic acid and metals were more easily mobilized. Above

a certain moisture content, however, the aqueous phase viscosity would not

be expected to change very much and thus, the half life could approach

a constant value as seen.

In order to verify this postulation, an NMR study was

made of each system for Run 3 at 300C. Since the spin-lattice relaxation

time of protons, T1, is inversely related to the viscosity of the aqueous

phase, the relaxation times were measured for each system. Figure 20

shows the plot of moisture content vs. 1/T . As seen, viscosity is

related inversely to the moisture content of the aqueous phase. The

relaxation times for the different systems lie on the same curve with

respect to hysteresis. This indicates that a decrease in half life with

increasing aw can be related to a viscosity phenomenon and the larger

half life for the humidified system is due to a smaller amount of water

and thus, increased viscosity as compared to the direct mix system at

the same aw.

However, viscosity is a linear function of the moisture

content and the half life shows a hyperbolic function with the rate of

destruction dropping off sharply as the moisture content decreases below

a certain value. Thus, one must expect that several mechanisms by which

water is controlling the reaction are taking place, the most likely

being a control of diffusion rate and a dilution effect above a critical
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phase volume. This would tend to flatten the half life out as seen in

Figure 19.

In conclusion, ascorbic acid destruction rates were

increased with increasing aw, and ascorbic acid was more rapidly destroyed

in the desorption system than in the adsorption system due to a decrease

in viscosity and possible dilution in the aqueous phase. Thus, if food

is prepared by a humidification method, the stability of ascorbic acid

could be improved at the same aw as compared to the direct mixing method.

However, overall storage stability is very small and some type of coating

of ascorbate would be necessary since the half lives are less than several

days at the desired aw.

4. Summary and Recommendations

The rate of destruction of ascorbic acid was determined in

model systems as a function of aw, temperature and method of preparation.

Under all conditions, the loss of ascorbate followed a first order reaction

with an increased rate as a and moisture increased. The half lives
w

were in the range of 1 to 3 days at 350C for the aw range of 0.84 to 0.67.

The increased rate was shown to be due to the decreasing viscosity of

the aqueous phase as measured by NMR. However, the rate does not increase

linearly with viscosity since a possible dilution effect is occurring

which would cause the rate constant to be unchanged. Based on this, to

insure ascorbic acid stability in IMF the following should be done:

a. Keep the aw as low as possible.

b. Incorporate some agent to increase the aqueous phase

viscosity which does not adsorb water to a high degree.
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c. Coat the ascorbic acid with a digestible but water

impermeable layer.

d. Incorporate the ascorbic acid into a fat phase.
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B. Vitamin C Stability in Hennican: An Intermediate Moisture Food

1. Introduction

In the previous section studies were reported on the des-

truction of ascorbic acid as a function of aw in model systems at a pH

of 6. This is close to the pH for Hennican (pH 5.2 to 5.5), an inter-

mediate moisture food developed in Phase I of this contract. The pH

was measured by dilution with water. An experiment was set up to

determine the rate of destruction of ascorbic acid directly in the
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intermediate moisture food and to compare it to the model system studies.

2. Materials and Methods

Some modifications of the extracting reagent previously

used for the model system were necessary. Also since the official

procedures were designed for either liquids or relatively dry solids,

a different method of extraction was necessary as well because initial

results showed poor extraction.

a. Extraction solutions

1. 6% HPO3 /8%HOAc/.005%EDTA solution

2. 3% HPO3/4%HOAc/.0025%EDTA solution made by diluting
number one above one to one with glass distilled
water

The EDTA was necessary to complex the ferrous/ferric

ions present in the product (mainly in the raisins) which would interfere

in the titration. When preparing the above extraction solutions it is

necessary to dissolve the EDTA in glass distilled water before adding

the HOAc to prevent clouding of the solution. The solution also tends

to cloud if refrigerated, so a fresh solution was prepared each time.

The standardization of the dye was carried out according

to AOAC procedure previously reported with the exception that some of

the ratios were changed (e.g. #mg.A.A./ml.A.A standard solution or

#mg.3%HP03: #ml.A.A. standard solution) so that the standardization

titrations would involve volumes comparable to the volume used in

titrations of the Hennican samples.

b. Procedure for ascorbic acid extraction

Weigh into a tared one cup blender jar 10 g + .01

of sample and make up to 100 g with solution #1 (this volume is the
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minimum necessary for thorough blending of the sample) then blend at

high speed for 60 to 90 seconds depending on the sample (drier samples

take longer). Next transfer 5 g + .01 of this slurry into a tared 100

ml volumetric flask and make up to 100 ml with solution #2. Pour this

solution into a flask containing about 3 g of Celite, shake and then

filter paper under vacuum into another flask. Immediately draw three

10 ml aliquots from the flask to suitable vessels and titrate to the

endpoint (a light pink persists for 15 seconds).

c. Procedure for Hennican preparation

Hennican was prepared as previously reported in Phase

I using the composition shown in Table 1 for two water activities.

The product was divided into 10 g samples and vacuum sealed in Scotchpak

#20 foil laminated film (3M Co.) and then stored at 250C. Ascorbic

acid was measured about every seven days. Initially 10 mg/g was added

to each system so that analysis would be easier to perform.

3. Results and Discussion

The results are shown in Figure 1 for the loss of ascorbic

acid with time at two aw's. The calculated half lives are presented

in the figure. It is obvious that at comparable pH the rate of loss

of added ascorbic acid is much less than that in the model systems,

which had a half life of 7 days at aw 0.68 and about 1 day at aw 0.86.

This is due to the fact that the available metal catalyst concentrations

must be different than those in the model system. Thus, the recommendations

presented may not be as serious in reference to isolating the ascorbic

acid; however, the measured half life of one to two months would mean

that an excessive amount of ascorbic acid would need to be added if a
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TABLE 1

HENNICAN-VITAMIN C STORAGE STUDY

COMPOSITION OF MODEL SYSTEMS

a, 0.68 a, 0.86
Ingredients grams % by weight grams % by weight

Dry roasted 66.50 18.23 66.50 15.59

peanuts

Freeze-dried 66.50 18.23 66.50 15.59

chicken

Raisins 133.00 36.46 133.00 31.18

Peanut butter 17.58 4.82 17.58 4.12

Honey 7.22 1.98 7.22 1.69

K-sorbistat 0.88 0.24 0.88 0.21

Non-fat dry 48.65 13.34 48.65 11.41

milk

Glass distilled 24.32 6.67 86.14 20.19

water

Total 364.74 100.00 426.56 100.00
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six month shelf life is required. Since this would make the product

unacceptable from a flavor standpoint, vitamin C should not be considered

in the formulation unless a stable coated form can be found. Of course,

the aw can be lowered. Assuming a fairly linear relationship as shown

with the model systems for a six month half life, the product aw would

have to be close to zero thus changing the characteristics of the food.

Thus the recommendations of the model system still hold.

4. Summary and Recommendations

In an intermediate moisture food the rate of ascorbic acid

loss is much less than in a model system. This could be due to the

difference in microenvironment. However, the rate is still very rapid

and could lead to significant changes in the desired nutrient value

of the food. Thus it is recommended that the processor:

a. Determine a method for coating ascorbic acid to slow

its rate of destruction.

b. Keep the a , of the food as low as possible,-while still

maintaining palatability.
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III. Microbiological Studies in Intermediate Moisture Food Systems

A. Effect of Sorption Hysteresis on Microbial Growth in Two

Intermediate Moisture Food Systems

1. Introduction

A microorganism's requirement for water has been related

to the water activity of its substrate. Troller (1973) has recently

reviewed the work in this area. Scott (1957) determined that the

minimum growth water activity may be identified for each group of

microorganisms. However, this minimum may vary depending upon the

solute used to adjust the water activity or the moisture content of

the substrate (Marshall et al., 1971; Kushner, 1971). This minimum is

also affected by the method of preparation of the food system. Foods

prepared to a given water activity by desorption or adsorption, for

example, exhibit different growth characteristics for microbes (Labuza

et al., 1972b; Plitman et al., 1973).

Working with four microorganisms in model systems, Labuza

et al. (1972b) determined that the minimum water activity allowing

growth in a desorption system was below that defined in the literature.

The minimum water activity allowing growth in a food of the same solids

composition as that prepared by desorption, but prepared by adsorption,

was not specifically defined. However, from these studies the growth

minima were projected to be higher than in the desorption system

exemplifying the moisture-hysteresis phenomenon as it affects microbial

growth. This hysteresis effect causes some systems to have a higher

moisture content at the same water activity if they are prepared by

desorption as opposed to adsorption.
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This phenomenon has practical importance in food processing

and also raises basic questions concerning the properties of water and

its interactions with food. This project was undertaken to re-examine

the hysteresis phenomenon on the growth minima of four microorganisms;

Pseudomonas fragi, Staphylococcus aureus (F265), Aspergillus niger and

Candida cypolytica; in two intermediate moisture foods. The two

model systems used were a pork system used by Labuza et al. (1972b)

and an infusion soaked chicken cube system prepared by a modification

of the method described by Hollis (1968). The systems were prepared,

inoculated with a known population of test organism, held in storage at

22 0C at the water activity of preparation and sampled to measure changes

in the viable microbial population.

2. Materials and Methods

a. Basic food systems

The model system was based on Heinz pork baby food

(3.88 g H20/g solids) to which a constant amount of glycerol to solids

ratio was added to reach various aw's for the direct mix (DM) system.

Table 1 shows the model system composition. After mixing the direct

mix systems, 5-6 g portions were transferred to sterile 2 oz. screw

cap jars. Half of these were frozen at -20
0C and then freeze-dried at

750F, 200 pHg for 18 hr. No significant glycerol loss occurred under

these conditions as determined by GLC. The dry samples were then

rehumidified by adding an amount of water which was 5% less than that

needed to reach the desired aw's. The jars were then held in desiccators

of appropriate aw for equilibration before being capped, sealed with

tape and put into storage at 220C with the DM samples.
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TABLE 1

PORK SLURRY MODEL SYSTEM COMPOSITION

a, system * Pork clycerol g H20 added Moisture content
g H20/g solids
DM** FDR***

0.67 5 g 7 g 0.0 g .50 .42

0.71 5 g 7 g 0.4 g .58 .46

0.81 5 g 7 g 1.4 g 1.01 .87

0.86 5 g 7 g 3.0 g 1.39 1.11

0.92 5 g 7 g 7.0 g 2.28 1.27

* as measured after 4 weeks storage
** direct mix

•** freeze-dried rehumidified
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The solid food system was based on infusion soaked

chicken cubes. Sterile, cooked white chicken meat was cut into 1.3

cm cubes using aseptic technique. The chicken was soaked at 210 C

for 18 hr. in the infusion solutions shown in Table 2 on a shaker at

100 rpm. The ratio of chicken to soak infusion was 1:10 (w/w). The

infusion was drained from the chicken and half the meat was inoculated

with the test organism and put into storage in sterile 2.0 oz.

jars at the appropriate a w . This constitutes the direct mix system.

The other half was freeze-dried under the same conditions as the pork

model system. When dry, the cubes were also partially rehumidified

to 5% below the final moisture content. These samples were also

stored in the appropriate desiccators.

b. Inoculation of systems and sampling procedures

The microbial suspensions were prepared in the same

way for inoculation into both IMF systems. The bacteria were grown

in 100 ml of TSY broth at 220C for 18 hr. on a shaker. The mold was

streaked onto a TSYA prescription bottle slant and grown for 5 days

at 220C. The spores were washed from the slant with 30 ml of sterile

water. The population of each suspension was estimated by measuring

the turbidity at 450 nm. Necessary dilutions were made to give the

desired initial viable population in the food system.

The microbes were added to the direct mix systems

during the mixing stage of the pork model food systems, and at the

end of the infusion soak in the chicken cube systems. All adsorption

(FDR) systems were inoculated via part of the water used in the partial

rehumidification of the dried samples to prevent any death that may
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TABLE 2

COMPOSITION OF INFUSION SYSTEMS USED TO

PREPARE THE SOLID CHICKEN SYSTEM

% by weight
a of Resulting
Chicken Cube 0.75 0.79 0.82 0.86 0.90 0.93 0.97

H20 41.8 48.3 54.8 61.8 74.3 78.8 88.6

NaCi 2.3 2.1 1.8 1.6 1.0 0.8 0.4

Chicken bouillon 4.1 3.7 3.2 2.6 1.9 1.8 0.8

Glycerol 51.4 45.6 39.8 33.8 22.6 18.3 10.9

Moisture content
(g H2 0/g solids)

Direct mix (DM) 0.59 0.75 0.85 0.89 1.04 1.17 1.72

Freeze-dried
rehumidified (FDR) 0.56 0.72 0.82 0.85 1.00 1.08 1.27
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have occurred during freeze-drying. Specifically, they were inoculated

by dropping 0.03 g of a suspension of the organism onto 5.0 g of the

sample. To prevent possible loss of moisture during storage, the samples

were then stored in the desiccators. The systems were inoculated to

an initial viable population of 104--105 CFU/g IMF system.

Sampling was done by either diluting 1 g of pork model

system with 9 ml of phosphate buffer (0.125%) or by blending 5 g of

chicken with 45 ml sterile phosphate buffer. Further dilutions were

made in phosphate buffer and duplicate 0.1 ml aliquots were spread

on TSY agar plates. The plates were incubated at a temperature near

optimum for each microorganism.

3. Results and Discussion

The study of the sorption hysteresis phenomena effect on

growth limiting aw in the IMF pork model system was done basically to

further confirm work reported by Labuza et al. (1972b). The results

of both studies show the same general effects for the four organisms

tested. As an example, Figure 1 shows the change in viability of

S. aureus in the pork model system vividly illustrating the effect of

hysteresis. The direct mix (DM) system at aw 0.92 shows growth, while

the FDR system at the same aw shows a rapid loss of viability. This

confirms the previous work of Labuza et al. (1972b). It also should

be noted that the inactivation rate decreased as the aw decreased

below the minimum for growth (0.92). The inactivation rate at aw 0.86

was faster than at aw 0.67 for the direct mix systems. The reason for

this reversal is unknown because little is understood.of the inactivation

mechanisms involved.
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Figure 1. Viability of Staphylococcus aureus in a Pork Slurry
Model System as a Function of aw and Sorption Hysteresis.
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The overall results are presented in Table 3. As seen,

the new data extend the aw, range of the adsorption system beyond that

of the previous work. In all cases the limiting aw range for growth

is higher in the adsorption systems than in the desorption (DM) systems.

The limiting a, for each organism tested in this study was higher in

the DM systems than that reported previously by Labuza et al. (1972b).

This is probably due to a change in the composition of the pork baby

food. Salt and MSG (mono sodium glutamate) were excluded from the

pork baby food used in this study. Although the moisture contents

were similar (3.6 and 3.9 g H20/g solids) the aw of the baby food in

the 1972 study was 0.90 as compared to 0.99 in this study. Therefore,

more glycerol was needed in the present system to achieve a comparable

aw. As shown by Plitman et al. (1973) and Acott and Labuza (1974),

glycerol itself may have an inhibitory effect on microbes beyond that

of lowering the a . The high glycerol to solids ratio in this case

may have resulted in the inhibition of growth at a higher aw .

The chicken cube food system represents a typical IM food

posing a practical challenge to the hysteresis phenomenon as it affects

microbial behavior. The results of the present chicken cube study

are shown in Figures 2 through 5 and summarized in Table 3. P. fragi

grew at a, 0.93 in the DM system but was rapidly inactivated in the

FDR system at an aw of 0.93, again demonstrating the hysteresis effect.

This species is very sensitive to stress. Leistner (1970) lists the

limiting growth aw as being 0.96, which is higher than found here.

This difference may be due to the method of aw determination employed

by the various investigators or the specific effect of glycerol.
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TABLE 3

LIMITING Aw GROWTH RANGE FOR MICROORGANISMS

System of Pork Model System Chicken Cube Literature
preparation 1972 ** Present work Present work Minimum

growth a w *

Pseudomonas fragi
DM a 0.75-0.84 0.86-0.92 0.86-0.93 0.96
FDR > 0.92 0.92-0.97 0.93-0.97

Candida cypolitica
DM 0.75-0.84 0.81-0.86 0.90-0.93 0.88
FDR > 0.92 0.86-0.92 0.88-0.93

Staphylococcus aureus
DM 0.75-0.84 0.86-0.92 0.86-0.90 0.86
FDR > 0.92 > 0.92 0.90-0.93

Aspergillus niger
DM 0.68--0.75 0.81--0.86 0.75-0.79 0.64
FDR > 0.92 0.86-0.92 0.79-0.83

* Leistner (1970)
** Labuza et al. (1972b)

a direct mix
b freeze-dried rehumidified
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Figure 2. Viability of Pseudomonas fragi on a Soak Infusion
Chicken Cube System as a Function of a, and Sorption Hysteresis
at 210C.
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Figure 3. Viability of Candida cypolytica on a Soak Infusion
Chicken Cube System as a Function of a. and Sorption Hysteresis.
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STAPHYLOCOCCUS AUREUS (F265)
CHICKEN CUBE at 23 0C
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Figure 4. Viability of Staphylococcus aureus on a Soak Infusion
Chicken Cube System as a Function of aw and Sorption Hysteresis.
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ASPERGILLUS NIGER
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Figure 5. Viability of Aspergillus niRer on a Soak Infusion
Chicken Cube System as a Function of a, and Sorption Hysteresis.
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The yeast (Figure 3) shows a growth minimum very close

to that found in the literature (0.88). The hysteresis effect was

not as pronounced in this case as it was with Pseudomonas fragi. As

seen in Figure 4, the effect of hysteresis on Staphylococcus aureus

in the solid food was not as pronounced as in the liquid food system,

however, it is greatest at the aw which seems to be at the border-

line of growth. Possibly if samples were taken for a more extended

period at an aw of 0.90 the effect would have been more obvious. The

results for Aspergillus niger show a very obvious hysteresis effect

at an a, of 0.79. It is possible that spores of the FDR system may

have died or may have eventually grown after an extended lag phase

since the experiment was only carried out for 13 weeks. The frequency

of plating was determined by the times for visual appearance of the

mold on the chicken, a criterion for consumer acceptance. This explains

the scarcity of data points for the mold systems. The overall results

are reported in Table 3. It is obvious that the growth range changes

slightly with the system, especially for the mold.

4. Summary and Recommendations

This study was done to confirm the fact that the method

of preparation of an IM food can affect the possible growth of micro-

organisms. Specifically, a food prepared by a desorption technique

has a higher moisture content at a given aw than does one prepared by

adsorption. In a liquid slurry system, studies with four organisms

showed that the organisms had a higher aw requirement for growth in

the adsorption system, confirming previous work. The same phenomenon

was studied in a solid food system and the results were repeated.
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This suggests that the total amount of water present as well as the

availability as defined by water activity is important for biological

reactions, as has been shown for chemical deterioration reactions

(Labuza et al., 1972a). Thus, one must know something of the history

of the system. These results also suggest why literature values may

be variable since different compositions, humectants and preparation

techniques are usually used. Based on this, it is recommended that,

if there is no problem with palatability, manufacturers should use

an adsorption process to prepare IMF since there is an advantage of

increased microbial inhibition.
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B. Inhibition of Aspergillus niger in an Intermediate Moisture

Food System

I. Introduction

The effect of water activity (aw) on the growth of micro-

organisms has been reviewed by Scott (1957) and Troller (1973). It is

known that as the water activity decreases, the growth of microbes is

slowed or prevented. Recently, intermediate moisture foods (IMF)

having a moisture content of 15-40% H20 and an aw of 0.65-0.85 have

been examined in terms of microbial stability (Hollis et al., 1969;

Labuza et al., 1972; Plitman et al., 1973). Microbial spoilage in

foods of this type is due primarily to mold or yeast growth since most

bacteria do not grow at the lower aw .

Pet foods are examples of commercial IMF meat products.

During the processing of these semi-moist foods, which includes extrusion

cooking, the incident yeast and pathogenic bacteria are presumably

killed, but the mold spores survive. Since these foods have a relatively

high pH (pH 5-6) and are stored at room temperature, the mold spores

are a potential spoilage problem. Thus, mycostatic agents are incorporated

into the food product to prevent growth and thus extend the shelf-

life of the product.

The growth of mold (as well as other microbes) is dependent

on aw , temperature, atmosphere and substrate, i.e. pH, nutrients and

inhibitors. At a given aw, the growth response will change if any of

the above factors is suboptimal (Christian, 1963; Tatini, 1973). The

effectiveness of a mycostatic agent should be greater in the IMF aw

range than in high moisture foods. The mycostatic system used in most
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IM meats is a combination of 2.0% propylene glycol and 0.3% potassium

sorbate (w/w) as described by Kaplow (1970). Plitman et al. (1973)

studied glycerol, butane diol and propylene glycol in aqueous brain

heart infusion and found the butane diol to be most inhibitory to

growth. The effect was greater than just an aw lowering action. The

inhibiting concentrations were 40% for glycerol (aw 0.865); 15% for

butane diol (aw 0.97) and 18% for glycol (aw 0.95). A synergistic

effect was also observed among the inhibitors.

Frankenfeld et al. (1973) made a similar study of the

effectiveness of glycerol, 1,3- butane diol, propylene glycol, potassium

sorbate (among others) against mold growth. Two of the systems tested

were near the pH of the Hennican system used in this study. One was

an apple flake system (1.94 g H20/g solids) at pH 4.4 and the second

was a chicken baby food system (3.54 g H20/g solids) at pH 6.5 These

were inoculated with spores and stored at 370C. Table 1 lists their

results. It should be noted that the aw's were not measured but, based

on the high moisture levels, the a's are greater than 0.90 in both systems.

A comparison of these results with Plitman et al. (1973) shows similar

results in that fairly high levels of glycerol and butane diol are

required when starting with high moisture systems. However, some

inhibitory effect occurs between aw and the inhibitors as evidenced by

the growth inhibition at different aw's. The comparison for propylene

glycol cannot be made since in the work of Frankenfeld et al. (1973)

growth occurred at the maximum level tested. In any case, it would

be probable that as a, is lowered the level of additive can be lowered.

The purpose of this storage study was to test a variety

of common food additives for their ability to inhibit the growth of
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TABLE 1

EFFECTIVE MOLD INHIBITOR CONCENTRATIONS(a)

Inhibitor Effective level*

Apple flakes Chicken

Glycerol >20% >25%

1,3- Butane diol 10% 25%

Propylene glycol >0.3% N.T.**

Potassium sorbate 0.3% N.T.

(a) Frankenfeld et al. (1973)

* % by weight of total system

** N.T. = not tested
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Aspergillus niger on food at an aw in the intermediate moisture food

range and as a function of pH. Foods can be classified as low acid

(pH > 5), medium acid (pH 4.5-5), acid (pH 3.7--4.5) and high acid

(pH < 3.7) (Cameron and Estey, 1940). In this study, the Hennican

was prepared to pH 5.7 and pH 4.2 as estimated using the gran plot

technique. Thus a low acid and an acid food were tested. Many

inhibitors only work under acid conditions. A. niger can grow in the

pH range of 2.8 to 8.8. Webb (1919) found that germination increases

as the acidity rises with a maximum at pH 3. Increased acid decreases

this rapidly. A. niger is one of the most active citric acid producers

itself which at high pH get metabolized to oxalic acid and C02. As

citric acid increases, the mold produces very few if any spores.

With respect to aw (as seen in the previous study, Section

III, A.) the mold used can grow down to aw, 0.81 in a pork--glycerol

slurry. However, when inoculated on a solid surface the mold can grow

as low as aw 0.79. When inhibitors are added, however, this can increase

the minimum growth aw, as was found by Plitman et al. (1973) for

Staphylococcus aureus.

2. Materials and Methods

a. Food systems

The intermediate moisture food used was an adaptation

of Pemmican, an old Indian trail and winter storage food made of buffalo

meat and berries. Chicken was chosen as the base for the IMF used in

this study. The composition of the basic system is shown in Table 2.
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TABLE 2

COMPOSITION OF IM FOOD: HENNICAN

Raisins 30%

H20 23

Peanuts 15

Chicken (freeze-dried) 15

Non-fat dry milk 11

Peanut butter 4

Honey 2

Moisture content = 41 g H20/g solids

aw = 0.85
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The aw of 0.85 allowed the growth of the mold but

inhibited the growth of the few natural bacterial contaminants in the

raw materials. No yeast contaminants were found. A cold-mixing procedure,

as shown in Table 3, was used to prepare the Hennican (the name given

to the chicken based IMF). The unsalted,l hulled peanuts (Skippy Co.,

Mpls, MN) and the chicken (Aslesen's Banquet Table, canned deluxe boned

chicken meat, #3022),which was freeze-dried, were finely ground separately

in one-half pint glass blender jars on an osterizer blender. The

non-fat dry milk and all other dry ingredients were mixed together.

The raisins (dried seedless) were ground in a Hobart food chopper and

then blanched in a microwave oven for 1.5 min. to destroy the enzymes

responsible for enzymatic browning. The dry components, ground raisins,

peanut butter (creamy style), honey and sterile distilled water were

kneaded together in a 500 ml Brabender Farinograph bowl at fast speed

for 5 min. to achieve a workable paste. This mixture was divided into

two equal parts and citric acid, 2% (w/w), was mixed into one part

for 3 min. in the Farinograph bowl. The food additives were added

via the appropriate carriers to the systems with and without citric

acid, and a spore suspension of Aspergillus niger was added to all

systems. Three min. of mixing was found adequate for each addition.

All systems were then shaped into squares weighing approximately 2.5

g each by rolling out the paste and cutting the squares to 2 cm x

1.5 cm x 0.5 cm. Two samples were placed into sterile plastic petri

dishes (60 x 15 mm) and then all samples were stored in desiccators

without vacuum at 220 C over a saturated solution of LiS04 (aw 0.85 at

220C). No weight change occurred during storage, showing equilibrium.
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TABLE 3. Hennican Preparation Method

NON - FAT
PEANUTS Grind

DRY MILK
FREEZE DRIED CHICKEN DRY MILK

BLEND ALL DRY
COMPONENTS

R RAISINS
TEST

ORGANISM INHIBITOR PEANUT BUTTER
HONEY

Shape Subdivide o g

O 0 BRABENDER
BOWL



The cover was removed periodically so that oxygen was not limiting.

b. Additives

The additives tested fall into four main categories:

acid-type, parabens, an antibiotic and polyhydric alcohols. Their

FDA status is listed in Table 4. Of the acid-type microbial inhibitors,

potassium sorbate is commonly used in cheeses, breads and intermediate

moisture foods to prevent mold and yeast growth. Calcium propionate

is used in cheeses and yeast leavened breads to inhibit molds and

bacteria. It does not interfere with the fermentation activity of

yeast. Benzoic acid inhibits molds and yeast and is used in foods

of low pH where bacteria normally do not grow.

The acid-type inhibitors must be in the undissociated

form to be inhibitory to microbes (Sauer, 1972; Ingram et al., 1956).

Chichester et al. (1968) suggest that the reason these preservatives

are effective only in the undissociated form is because in that form

it is highly lipid soluble and accumulates in the lipid structures of

cells. There it somehow inhibits normal cell metabolism. However,

the mode of action of these preservatives is still not known.

The effect of pH on dissociation of the three additives

tested is shown in Table 5. The relationship of pH and dissociation

is described by the Henderson-Hasselbalch equation:

pH = pKa + log {A}
{HA}

where pH = - log {H+}
{HA} = conc. of undissociated acid
{A-} = conc. of dissociated acid

As the pH decreases, more of the acid inhibitor is in its active,

undissociated form. When the pH of the food is equal to the pKa of
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TABLE 4

FDA STATUS OF "MICROBIAL INHIBITORS"

Cleared Final Ruling on Food additive Max. %
Food additive under as of Feb. 4, 1974 allowed

Section

Benzoic acid 121.101 GRAS as chemical preservative 0.1

Calcium propionate 121.101 GRAS as chemical preservative 0.32

dry white
flour basis

0.38
dry whole
wheat basis

Potassium sorbate 121.101 GRAS as chemical preservative

GRAS by FEMA
Cleared by Meat Inspection Div. 2.5 to

dip casings

1,3 Butane diol 121.2566 Cleared as antioxidant and/or

stabilizer in polymers used in
manufacture of articles inten-
ded for use in, ie. preparing
food

Glycerol 121.101 GRAS as miscellaneous--general
purpose food additive

GRAS by FEMA
121.2552 Cleared for use in packaging

materials
Synthetic glycerol 121.1111 Should be produced by the

hydrolysis of carbohydrates
a. it should have no more
than 0.2% (w/w) Butanetriols
b. should be used not to an
excess of that reasonably
required to produce the
intended effect

Methyl paraben 121.2001 Cleared as antimycotic in
food packaging materials

121.101 As a chemical preservative 0.1
121.249 For use in treatment of

bovine mastitis
121.104 Tolerance in milk 0.00

(G) (1)
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Table 4 continued (2)

Cleared Final ruling on Food Additive Max. %

Food additive under as of Feb. 4, 1974 allowed
Section

Mannitol 121.101 GRAS as a nutrient and/or 5.0
dietary supplement

121.1115 Cleared for use in foods, in ---
amount not to exceed that
reasonably required to
accomplish tech. effect

121.104 GRAS as sweetener, formulating 40.0

aid, stabilizer & thickener, soft
surface-finishing agent at candy
levels not to exceed manuf.
practices 8.0

frosting
confections

<2.5
all other
food

When food consumption may result
in daily ingestion of 20 grams
of Mannitol, label statement
required, "Excess consumption
may have a laxative effect."

Propylene glycol 121.101 GRAS as an emulsifying agent
GRAS as miscellaneous and/or
general purpose food additive

Propyl paraben 121.2001 Cleared as an antimycotic in
manuf. of food pckg. materials

121.101 GRAS as chemical preservative 0.1
121.249 For use in treatment of bovine ---

mastitis
135G.42 Tolerance in milk 0.00

Cleared by Meat Inspection Div. 3.5
to retard mold growth in dry
sausage

Sorbitol 121.101 GRAS as a nutrient and/or 7.0
dietary supplement
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Table 4 continued (3)

Cleared Final ruling on Food Additive Max. %

Food additive under as of Feb. 4, 1974 allowed

Section

Sorbitol 121.1053 Food additive - levels not to
exceed manuf. practices which
NAS survey indicates in a max.
conc. of:

Hard candy 97.0
Chewing gum 62.0
Soft candy 98.0
Frozen desserts & 17.0

mixes
Baked goods & mixes 30.0
All other foods 8.0

When food consumption may result

in daily ingestion of >50g/day
of Sorbitol, label statement
must say, "Excess consumption

may have a laxative effect."

Citric acid 121.101 GRAS as a sequestrant
121.101 Cleared as miscellaneous and/or

general purpose additive
Cleared by Meat Inspection Div.

to protect flavor of oleomar-
garine & to flavor chili con
carne at levels sufficient
for purpose

Cleared by Meat Inspection Div.
to increase effectiveness of
antioxidants in lard, shorten-
ing & dry sausage as follows:
--alone or in combination with 0.01

antioxidant in lard, short.
--in dry sausage in combination 0.001

with 0.003% antioxidant
--in combination with anti- 0.01

oxidant in fresh pork sausage
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TABLE 5

EFFECT OF pH ON DISSOCIATION OF ACID INHIBITORS

% Active - Undissociated Acid

pH Sorbic Benzoic Propionic

3 98 94 99

4 86 60 88

5 37 13 42

6 6 1.5 6.7

7 0.6 0.15 0.7

pKa  4.76 4.19 4.87
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the inhibitor, {HA} - {A-} , i.e. only 50% of the inhibitor is in the

active form. From Table 5, for example, if 0.5% of sorbic acid is

effective at pH 2, then to achieve the same effectiveness at pH 5,

1.35% sorbic acid would be required. At pH 5, 3.8% benzoic acid is

needed for equivalent activity to 0.5% at pH 2. This high level of

acid, however, is not allowed by FDA specifications. At the pH's used

in this study (pH 5.5 and 4.2) the effect of water activity in creating

an additional stress can be determined.

The parabens, which are esters of parabenzoic acid,

are effective as growth inhibitors in pH ranges up to neutrality and

are used widely in cosmetics. Their solubility is not as good as acid

type inhibitors, however, the effectiveness is a function of the ester

chain length. The longer chain is less soluble but more effective.

They are also used in beverages, baked goods and dressings. Because of

the substitution they are better inhibitors. According to Furia (1968)

the parabens are very effective against many microbes, especially mold

and Gram-positive bacteria. The recommended levels for inhibition against

several microbes is listed in Table 6. In fact, the parabens should

be useful since they are more effective at high pH than either propionate

or sorbate. The maximum allowable concentration is 0.1%. Methyl paraben

is less effective, but more soluble in water while the opposite is true

for propyl paraben. To achieve the best effect the esters are often

used in combination (Chichester et al., 1968).

The antibiotic studied was pimaricin (natamycin) which

is an effective inhibitor of mold and yeast and is used in very low

concentrations as a dip solution for cheeses and sausages in some
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TABLE 6

ANTIMICROBIAL ACTIVITY OF PARABENS

Microorganisms % Required for Inhibition
Methyl Propyl

Aspergillus niger 0.1 0.02

Salmonella typhosa 0.2 0.1

Staphylococcus aureus 0.4 0.05

Candida albicans 0.1 0.0125

Saccharomyces cerevisiae 0.1 0.0125

Bacillus subtilis 0.2 0.025
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European countries (Clark et al., 1964). On agar, pimaricin inhibits

A. niger at 5 ppm (Klis et al., 1959).

1,3 butane diol (Celanese Chem. Co.), a polyhydric

alcohol, is used in foods as a flavor carrier. Mannitol, sorbitol and

glycerol are used in foods as humectants, plasticizers or sweeteners.

The additives were mixed into the food via a water or acetone carrier,

depending on the solubility of the additive. When water was used, water

had been omitted from the formulation of that particular system to

prevent an increase in aw. When acetone was used, the food system was

kneaded until the solvent odor disappeared (an additional 5 min.).

c. Mold inoculation

The mold used in this study was chosen since it is a

frequent contaminant of commercial intermediate moisture foods. Aspergillus

niger (Plant Pathology, University of Minnesota) was streaked onto a

sterile cotton plugged 150 ml prescription bottle slant containing

TSYA (Trypticase soy agar and 0.5% yeast extract, BBL brand). The culture

was grown at 220 C for 5 days. The mold spores were washed from the slant

with 30 ml of sterile phosphate buffer (0.125%) and the turbidity of

the suspension was measured to estimate the mold spore concentration.

The spore suspension was subsequently diluted and 1 ml was inoculated

into the mixing bowl to give an initial mold count of 1 x 104 CFU/g

food. The water used as a vehicle for the mold spores was omitted from

the formulation of the systems to maintain the desired aw of 0.85.

After 3 min. mixing in the Brabender bowl, samples of

the systems were plated to determine the initial viable mold count.

5 g of the food was blended with 45 ml of sterile deionized water for

1 min. and TSY agar plates were used in duplicate at 220 C for 3 days.
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d. pH of systems

The pH of the systems was determined by two methods.

A direct reading was taken by pressing a non-aqueous Beckman electrode

(#39142) into the squares of food. The gran plot method was also used.

To 3.0 g of food either 1, 2 or 3 ml of distilled deionized water was

added and stirred in to make a slurry. The pH was read after 5 min.

equilibration. The pH was plotted against the grams of H20 added on gran

plot paper (100% volume-corrected, Orion cat. no. 900093). The value

at zero addition is the pH. This method is useful for IMF systems

and was found more reliable than the method recommended in the A.O.A.C.

book of standard methods (A.O.A.C., 1970). The two methods used in

this study were found to give the same pH value within + 0.05 pH units

which is the probable variation in composition. The pH of each system

is shown in Table 7.

e. Aw and moisture content

The water activity (aw) was measured by the manometer

technique. The technique has an accuracy of + 0.005 at an aw of 0.85.

Storage of the samples over the saturated salt solution made certain

that this aw was constant throughout storage.

The moisture content of representative duplicate samples

of the systems with and without citric acid was determined by the vacuum

oven method at 29" Hg and 600C for 24 hr.

3. Results and Discussion

The parameters and results of this study are shown in Table

8. The criteria for no inhibition was when mold became visible. This

would indicate a consumer acceptance criterion. As should be expected,
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TABLE 7

pH OF HENNICAN WITH MICROBIAL INHIBITORS

pH
Inhibitor % Level Plain Hennican Hennican w/2%

citric acid

Methyl paraben 0.03 5.53 4.23
0.05 5.52 4.23
0.10 5.50 4.34

Propyl paraben 0.01 5.48 4.26
0.03 5.49 4.24
0.04 5.51 4.24

Parabens
Methyl:Propyl (2:1) 0.05 5.48 4.29

0.10 5.50 4.30

Mannitol 1.0 5.47 4.25
2.0 5.45 4.22
3.0 5.45 4.22

Sorbitol 1.0 5.34 4.23
2.0 5.47 4.23
3.0 5.52 4.22

Glycerol 1.0 5.60 4.27
2.0 5.53 4.20
3.0 5.52 4.20

Propylene glycol 1.0 5.39 4.18
2.0 5.50 4.24
4.0 5.63 4.25

Pimaricin 0.002 5.53 4.25
0.005 5.53 4.30

Control .0 5.60 4.20
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TABLE 8

EFFECTIVENESS OF MICROBIAL INHIBITORS IN HENNICAN, aw 0.85

Inhibitor %w/w Time for 1st Appearance of A. niger* (wks)
pH 5.7 pH 4.2

Potassium sorbate** 0.15 2 ng (no growth)
0.30 ng ng

Calcium propionate** 0.1 2 ng
0.2 19 ng
0.3 ng ng

Benzoic acid** 0.2 7 ng
0.3 ng ng

Methyl paraben* 0.03 ng ng
0.05 ng ng
0.10 ng ng

Propyl paraben* 0.01 ng ng
0.03 ng ng
0.04 ng ng

Parabens Me/Pro4  0.05 ng ng
(2:1) 0.10 ng ng

Pimaricin* 0.001 1 4.5
0.002 ng ng
0.005 ng ng

1,3 Butane diol** 1.0 1 22
2.0 ng ng
4.0 ng ng

Propylene glycol* 1.0 ng ng
2.0 ng ng
4.0 ng ng

Mannitol* 1.0 ng ng
2.0 ng ng

Sorbitol* 1.0 ng ng
2.0 ng ng

Glycerol* 1.0 ng ng
1.0 ng ng

Control** 1 4.5

*"6 months storage; ** 9 months storage 220 C:
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all the acid-type inhibitors were completely effective at pH 4.2 showing

no growth for over 9 months in this intermediate moisture food. With

a pH in the normal range for meat products, 0.3%, K-sorbate is an effective

mold inhibitor without the added effect of propylene glycol. If the

food were higher in pH, more K-sorbate than the FDA allowance would be

necessary. A similar trend is found for the propionate. Benzoic acid

is not effective in the amount allowed by FDA restriction (0.1%) at

the higher pH.

The parabens inhibited the mold at all levels tested.

As seen, a lower concentration than found for the acid-type inhibitors

is effective. The antibiotic, pimaricin, is effective at 0.002% (or

20 ppm) at both pH 5.7 and pH 4.2. Klis et al. (1959) found inhibition

at 5 ppm in agar at pH 5.6. However, they only incubated for two weeks.

It is possible growth might have occurred after that time, showing from

a practical standpoint that a longer time is needed. This study found

10 ppm to be ineffective. Most likely the antibiotic was not distributed

as well in the heterogeneous food of this study.

The polyhydric alcohols, including propylene glycol, were

inhibitory at lower concentrations compared to the amount allowed for

various uses by the FDA. The minimum inhibitory concentration determined

for 1,3 Butane diol, 2.0%, is below the inhibitory concentration found

by Frankenfeld et al. (1973) in studies of Aspergillus niger on food

systems of higher aw, and similar pH.

The interaction of aw, solute used and pH in their effect

on microorganisms has been reported by many workers ( Troller, 1973).

The solutes used to lower aw are often polyols, such as glycerol, propylene
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glycol, 1,3 butane diol, and it is certain that their inhibitory effect

is not entirely related to their water binding capacity; however, the

reason for their toxicity is not known. Karmas suggests that it may

be due to water structuring by the polyols (personal communication).

Working with Neurospora sp., Charlang and Horowitz (1970) found that

glycerol was less inhibitory as compared to NaC1 or sucrose at the same

aw . They suggest that the difference is due to the solute's electrolytic

properties. They found that at low aw, a substance essential for spore

germination was lost to the medium and when the substance was isolated

and supplied to the spores germination occurred. They suggest that

the release of this substance is due to plasmolysis which is a function

of the permeability of the cell to a solute.

Webb (1960) suggested that death at lowered aw was due to

the dehydration of an essential macromolecule. He suggested that if

the solute had a hydrogen bonding ability, it may bind on the macro-

molecule and prevent denaturation from loss of the hydration shell as

a, decreases. This could explain why glycerol was less toxic than

NaCl in the Charlang and Horowitz (1970) study, however, it does not

explain the toxicity in this study.

Horner and Anagnostopoulos (1973) studied the growth rate

of several molds as a function of pH, aw, temperature and the solute

used to adjust aw . They found glycerol to be more inhibitory to

Aspergillus niger than sucrose at the same pH and aw . On agar at a

0.86 and pH 3.7, growth of Aspergillus niger was visible on media

containing glycerol as the humectant after 5 days at 250 C. This is a

very short lag time compared to the present study in which the control
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Hennican (no glycerol added) at aw 0.85, pH 4.2 didn't show growth of

the mold for 4.5 weeks. Under the stress presented by this real food

system as compared to nutrient agar, the additional adverse effects

of only 1% of glycerol was enough to completely inhibit the mold for

over 6 months. That stresses on the cells are taking place can be seen

in Table 9 which shows the change in morphology of the mold under the

different conditions.

After six months, a sample of each of the systems which

showed no growth was plated to determine if viable mold spores were

present. Table 10 shows these results. Total count is reported showing

that some of the low number of natural contaminants originally in the

system have survived but haven't increased in numbers. A gram stain

was done on various representative colonies from the TSYA plates. Most

of the persisting bacteria were Gram (-) rods. This is unusual as

Gram (-) microbes are usually less stress resistant. Gram (+) cocci

were found in the propyl and methyl paraben systems. Note that there

were no viable mold spores detected in any of the systems, with the

exception of the glycerol 1, 2 and 3% systems at pH 4.2. This shows

that most conditions were actually lethal to the mold.

4. Summary and Recommendations

The interaction of pH with several proposed antimycotic

food additives was studied in an intermediate moisture food (IMF) to

determine their efficacy against mold growth. An IMF chicken based

product was prepared to a water activity (aw) of 0.85. To one system

citric acid was added to change the pH from 5.7 to 4.2. These systems

were then blended with the antimycotics tested including potassium
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TABLE 9

VARIATIONS IN MORPHOLOGY AFTER 6 MONTHS

AT 220C IN HENNICAN AT A 0.85w

Antimycotic (% added) Mycellium characteristics Spore characteristics
pH 5.7 pH 4.2 pH 5.7 pH 4.2

K-sorbate
0.15 gray--long ng black ng
0.30 ng ng ng ng

Calcium propionate
0.1 tan ng black ng
0.2 tan ng black ng
0.3 ng ng ng ng

1-3 Butylene glycol
1.0 gray white black-brown black
2.0 ng ng ng ng
4.0 ng ng ng ng

Benzoic acid
0.2 white ng black ng
0.3 ng ng ng ng

Pimaricin
0.0005 tan white (long myc) black black
0.0010 light tan white (long myc) black black

Control
0.0000 white white black black

ng = no growth
myc = mycellium
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TABLE 10

TOTAL VIABLE COUNT AFTER 6 MONTHS @ 22 0 C IN HENNICAN AT Aw 0.85

Gram reaction* and

(count/g of Hennican)

% pH 5.7 pH 4.2

Methyl paraben 0.03 <10 g <10 g
0.05 <102 g- <102 g-
0.10 <10 2 g- <102 g-

Propyl paraben 0.01 <102 g+ <102 g-
0.03 <102 g+ <10 2 g+
0.04 <102 g+ <102 g+

Combo paraben 0.05 <102 g- <102 g-
0.10 <102 - <10 2 -

Mannitol 1.0 <102 g- <102 g-
2.0 <102 g- <10 2 g-
3.0 <102 g- <102 g-

Sorbitol 1.0 <101 - <101 g-

2.0 <101 g- <01 -

3.0 <10 1 g- <101 g-

Glycerol 1.0 <10 2 g- 2.3 x 104 mold
2.0 <10 2 g- 1.2 x 10 3 mold
3.0 <102 g- <102 mold

Propylene glycol 1.0 <102 g- <10 2 -
2.0 <10 2 g- <102 g-
3.0 <102 g- <102 g-

Pimaricin 0.002 <101 g- <10 2 -
0.005 <101 - <10 2 g-

*g- = g- rods; g+ = g+ cocci

mold was typical A. niger
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sorbate, calcium propionate, methyl and propyl paraben, 1-3 butane diol,

glycerol, mannitol, sorbitol, propylene glycol, benzoic acid and pimaricin

at 2-3 levels. To each system spores of Aspergillus niger were added

to give a count of 104/gram. The systems were stored in desiccators

at aw 0.85 at 220 C and time for mycelia to appear was measured over

a nine month period. At least 10 separate samples were used. The results

showed that most of the growth inhibitors were as effective as potassium

sorbate below the accepted FDA approved levels of addition. For example,

calcium propionate at pH 5.7 and 0.3% w/w was as effective as the sorbate.

Glycerol at 1.0% was effective at both pH levels. This study showed

that many approved food additives not used in IMF systems are as effective

as potassium sorbate in preventing the growth of a mold. From a processors

standpoint.based on price and availability, the following should be

used in preparation of an intermediate moisture food at a pH around

5 to 6:

(1) Propylene glycol or glycerol at 1-2% w/w.

(2) The above recommendation at 1% in combination with

methyl paraben at 0.033% and propylparaben at 0.007%.

(3) Pimaricin at 0.002% if approved by the FDA.

(4) Butane diol would be applicable if it receives

FDA approval.

Although the other glycols were as effective at pH 5.7, their poorer

water sorption capacity and flavor would make them unacceptable.
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C. Antimicrobial Action of Polyhydric Alcohols on Microorganisms

1. Introduction

Olitzky and Maitly (1967) suggested as a method for the

detection of Gram (+) bacteria the addition of 6 or 12% propylene glycol

to plating medium. 6% propylene glycol allowed the growth of Staphylo-

coccus sp. and Streptococcus pp., but inhibited Proteus sp. and other

Gram (-) bacteria. 12% propylene glycol in agar plates supported the

growth of coagulase (+) Staphylococcus sp., but not other species.

It is of interest to know whether this inhibition is due to a specific

action of the propylene glycol or if it is due toa water activity lowering

effect. An experiment was designed to test the glycols used in the

mold inhibition experiment (Section III, B.) against S. aureus (F265)

and A. niger, it was also proposed to measure the aw of the agar with

12% propylene glycol medium, to better understand the mode of action

of the propylene glycol. The aw growth minima for most of the Gram

(-) bacteria tested by Olitzky and Maitly is 0.95, however, for Staph-

ylococcus aureus it is 0.86 (Leistner, 1970). The minimum growth aw

for A. niger is between 0.79 to 0,82 (Section III, A.).

2. Methods

Five polyhydric alcohols were tested to determine their

effectiveness in inhibiting the growth of Staphylococcus aureus F265

and Aspergillus niger. Each alcohol was added to trypticase soy yeast

extract agar in two concentrations: 6% and 12%. The polyols were added

to 50 ml of liquified TSY agar in 3 and 6 ml aliquots to obtain these

concentrations. After mixing by swirling the bottles, each 50 ml portion

of agar was poured into 5 plastic petri dishes. The agar was allowed
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to solidify and one plate from each group was divided in half and

streaked with each of the two arganisms to be tested. The inoculated

plates were incubated at 370 C for 24 hr and the growth which occurred

was recorded. The water activity of the TSY agar plus 12% propylene

glycolwas measured using the method described by Vos and Labuza (1974).

3. Results and Discussion

The measured a, of the 12% propylene glycol - TSYA medium

is 0.96. This is slightly higher than the minimum growth aw in the

literature for the Gram (-) bacteria tested by Olitzky and Maitly.

It is hard to be certain of literature values for aw since many methods

used in the past for aw measurement are not reliable. The aw's of the

other systems were not measured but would be higher than the propylene

glycol. It is possible therefore that inhibition was due to a,

lowering, since Gram (-) bacteria are more sensitive to lowered aw

than the Gram (+) bacteria. On the other hand, the marginal aw and

the inhibitory property of propylene glycol could have prevented growth.

The aw of the 6% propylene glycol in TSYA was 0.98 which should support

growth of the Gram (-) bacteria tested. Inhibition therefore appears

to be due to some specific action of the glycol and not due to a,

lowering.

As seen in Table 1, the S. aureus grew at both concentrations

of all the polyols. 12% propylene glycol and 1,3 butane diol offered

more stress than the others tested. The mold grew typically in the

12% sorbitol and mannitol systems which have relatively high aw's, while

in the Hennican (0.85), 1% of these were inhibitory as shown in Section

III, B. On 6% propylene glycol and 1,3 butane diol the mold grew weakly
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TABLE 1

GROWTH OF MICROORGANISMS ON POLYOL-TSYAGAR STREAK PLATES

WITH VARIOUS POLYOLS

S. aureus (F265) A. niger

Polyol 6% 12% 6% 12%

Glycerol +++ +++ ++ +
green spores green spores

Propylene glycol +++ + + ng

1,3 Butane diol +H + + ng

Sorbitol +++ ++ +++ +++

Mannitol +++ 4++ ++ +++

+++ - heavy growth
++ - moderate growth

+ - light growth

ng - no growth
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and no growth occurred at the 12% levels, although the staphylococci

(which are less tolerant of low aw than mold) did grow.

Frankenfeld (1974) found 2% propylene glycol plus 20%

glycerol in nutrient brothyand 5% 1,3 butane diol and 20% glycerol in

nutrient broth to be ineffective in inhibiting A. niger. In light of

the present results, the failure of these high concentrations to inhibit

the mold growth is surprising. The difference could be related to the

type of media used and growth of mold which occurs in liquid vs. semi-

solid media. The pH of both studies was 6.8-7.0.

The growth morphology of the mold on the glycerol TSYA

plates was unusual. The spores that were produced in both cases were

green, a physiological response of A. niger which is indicative of

poor nutrition, specifically, a lack of Cu. This color reaction is

so fundamental that A. niger may be used for bioassay for Cu4+ (Cochrane,

1958).

4. Summary and Recommendations

The results of this study suggest that in liquid medium,

the response of a pathogen namely Staphylococcus aureus to the presence

of humectants is different than that of a mold. The organism in this

study grew in a basal medium with up to 12% addition of either glycerol,

propylene glycol, 1,3 butane diol, sorbitol or mannitol whereas the

glycol and butane diol at 1% inhibited the mold growth. However, this

was at a lower aw. These latter were suggested as being good antimycotic

humectants from the previous study. This study therefore leads to the

recommendation that processors should challenge their finished IMF

product with Staphylococcus aureus to be certain that it prevents growth,
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especially if the aw is above 0.86. It is possible that at aw 0.86,

the same levels of humectants (about 1%) that inhibit mold will also

be effective against staphylococcal growth.
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D. The Effect of pH on the Growth of Aspergillus niger in an

Intermediate Moisture Food

1. Introduction

The stability of an intermediate moisture food is determined

by the aqueous environment. With respect to microbial growth, the

basic factors are the amount of nutrient available, the availability

of water as determined by the water activity (Section III, A.), the

presence of growth inhibitors (Section III, B.) and the affect of pH.

Many organisms especially pathogens are inhibited as pH decreases,

with a sharp decrease coming below pH 4.5. This study was designed to

test the inhibitory effects of various food acids on the growth of a

mold in Hennican, an intermediate moisture food.

2. Methods

a. System preparation

Hennican was prepared according to the procedure outlined

in Phase I, NAS 9-12560. Table 1 shows the composition, moisture and

aw . After mixing, the system was divided and a calculated amount of

various acids was mixed into the different portions. Levels of 1 and

2% were used for the acidulants. The mold spore suspension was added

at this time, as done previously, giving an initial count of 104 CFU/g

of Hennican. It was then cut into squares and stored in desiccators

at aw 0.85 and 220C.

b. Acids used

The properties and GRAS status of the acidulants used

are listed in Table 2. Fumaric, citric, lactic, adipic and phosphoric

acid are used in food items to adjust pH, act as antioxidants (chelating
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TABLE 1

COMPOSITION OF HENNICAN SYSTEM

Component %

Skippy peanuts 15.06

Freeze-dried chicken 15.06

Raisins 30.12

Skippy peanut butter 3.99

Honey 1.63

Non-fat dry milk 11.01

H20 23.13

Value

Moisture contenta  40.82

(g H 2 0/g solids)

awb 0.85

a _ vacuum drying oven (18 hr, 27 Hg, 640 C)
b - VPM @ 710F
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TABLE 2

ACIDULANT PROPERTIES FOR pH STUDY

Adipic Citric Fumaric Lactic

Kal 3.7 x 10- 5  8.2 x 10- 4  1.0 x 10- 3  1.4 x 10- 4

Ka2 2.4 x 10- 6  8.8 x 10- 5  3.0 x 10- 5

Ka3 ---------- 3.9 x 10- 6

Properties: Non-hygroscopic Very H20 Non-hygroscopic Non-volatile
soluble liquid

Buffer in pH Buffer index Buffer index Self esterific-
range 2.5-3.0 2.5 3.46 ation on heating

Low acidity Metal chelater

FDA status: GRAS GRAS GRAS GRAS

Uses: Grape flavored Dairy prod. Supplements Spanish olives
products (pH & flavor) grap flavor

Dry food Prevents Dry foods Liquid
powders, e.g. staling in prevent caking shortening
gelatin frying oils e.g. pudding

Fruit drinks Fruit juices Prevent Cheeses
rancidity in

Processed Jellies, lard, butter Jelly, jam
cheeses dressings sausage, nuts

bacon
Candy Honey-prevents Wine, juices

crystallization

w/Na meta- Antioxidant w/Na Benzoate
phosphate as in fish in green foods
preservative in & fish
sausage & meat
products Stabilizer for

suspended matter in
flash-sterilized or
frozen concentrates
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agents) and produce tartness in accordance with the particular properties

of the acid and its acid strength. Individual acids may have flavor

and physical properties other than acid strength which are especially

advantageous in particular food items. Table 1 lists some properties

and uses of the acidulants in foods. For instance, adipic and fumaric

acid have a flavor quality which complement grape flavor. Their non-

hygroscopicity makes their presence in dry products better than citric

acid, which would encourage caking. Citric acid will chelate metals

so would aide in slowing lipid oxidation. Use of certain acidulants

may have a synergistic effect when used with the pH-dependent acid

type inhibitors. This synergism may be even more evident in IM foods

where the' conditions for survival and growth of microbes are already

adverse because of low moisture content and water activity. The amount

of preservative needed may be minute enough so that undesirable acid

flavor would not be noticed, i.e. in a meat or other product when

tartness is not a natural flavor characteristic. For instance, adipic

acid and sodium metaphosphate, or fumaric acid and benzoate have been

found to be antimicrobial as well as antioxidant in meat products.

Two systems were studied. In the first study, the

acids were added at 1 and 2% for each of them. In addition, a citric

acid system at 4% and a 10% adipic acid system were used. The pH as

measured by the gran plot technique is shown with the results in Table 3.

In the second study, the acids were compared at similar pH as determined

by the Beckman method. The pH vs. acid concentration curve is shown

in Section V, C. The levels tested are shown in Table 4 along with

the results.
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3. Results and Discussion

The results are presented as the time until the first

sign of the white mold mycellium and also the amount of time required

for production of the black spores. This means of presentation does

not depict the morphological variations but does give an indication

of the difference in the extent of inhibition as a function of pH and

of acidulant.

The results are presented in Tables 3 and 4. There is a

slight difference in the time required for sporulation between the two

batches of Hennican. The reason for this is not known, but may indicate

a variable in the nutrients of the Hennican components, as the other

variables were the same for both batches. The study presented in Table

3 was designed to compare acid strength in terms of the pH attained

after adding 1 or 2% of the acidulant. The control Hennican which

has had no acidulant added is a low acid food (pH 5.6). 1% level of

all acidulants put the Hennican in the medium acid range (pH 4.5 to

5.0). 2% fumaric and citric acid make Hennican an acid food (pH 3.7

to 4.5). The 10% level of adipic acid was needed to make an acid

Hennican system.

The pH of the control (5.6) is optimum for growth of

A. niger and mold appeared there after 9 days. The addition of 1%

citric acid didn't affect the time for first appearance but the time

for spore formation was greatly affected. 1% of the other acids increased

the lag phase and as expected, as the concentration of acid increased,

the time for appearance increased.
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TABLE 3

EFFECT OF ACIDS ON THE GROWTH OF A. NIGER ON HENNICAN

(a w - 0.85 -- 22 0 C)

Time for Ist Time for
Acid % Added pH Sign of Mold Sporulation

(days) (days)

Control 0 5.6 9 12

Adipic 1.0 5.0. 11 --

2.0 4.6 19 --
10.0 4.3 -- --

Citric 1.0 4.7 9 49
2.0 4.3 11 42
4.0 3.9 16 28

Fumaric 1.0 4.5 11 39
2.0 4.0 14 44

Lactic 1.0 4.9 13 --
2.0 4.5 21 --

- none in 63 days

-133-



Lactic acid was more inhibitory at the 2% level (pH 4.5)

than the other acids at that level although the pH wasn't as low as

in the 2% fumaric acid system. This indicates some specific inhibitory

effect. Adipic acid at 10% gives the same pH as the 2% citric acid

system. It completely inhibited mold growth for 63 days whereas the

citrate did not, again a specific acid effect. The type of acid is

as important as the pH attained. The second study, reported in Table

4, was made to determine the effects of the acidulants at similar

pH levels. The time for first appearance of mold varies over a period

of only 3 days with all the samples showing mold in that time. This

was less than occurred in the previous test and the reason is unknown.

Adjusting the pH to 5.0 with adipic, citric or lactic

acid gave the same results as the control at pH 5.6. Samples with

citric acid or phosphoric acid of pH from 5.0 to 4.2 all showed mold

on the same day suggesting that lowering the pH to 4.2 had no effect

on growth. However, an effect is evident in the difference in

morphology of the mold that appeared. This indicated that some stress

occurred on the organism. The growth of mycellium at the lower pH's

is much less dense than at high pH's.

An interesting effect was noted in the first study with

citric acid. Mold appeared first at the higher pH but the black spores

actually appeared first at the lower pH. A. niger is one of the most

active citric acid producers. At high pH, this citric acid gets

metabolized to oxalic acid and CO2. When a lot of citric acid is being

produced, spores are not produced.
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TABLE 4

EFFECT OF pH AND ACID TYPE ON GROWTH OF A. NIGER ON HENNICAN

(a - 0.85 -- 220 C)

Acid % Added pH Time for Ist Time for
Sign of Mold Sporulation

(days) (days)

Control 0 5.5 7 9

Adipic 1.01 5.0 7 11
3.03 4.6 8 12
16.0 4.2 9 13

Citric 0.65 5.0 7 11
1.24 4.6 7 11
2.03 4.2 7 11

Fumaric 0.52 5.0 8 11
0.83 4.6 8 12
1.68 4.2 9 13

Lactic 0.72 5.0 7 11
1.10 4.6 8 12
2.48 4.2 8 13

Phosphoric 0.52 5.0 8 11
0.80 4.6 8 11
1.56 4.2 8 11
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As mentioned previously, the morphological differences

show unusual effects. Table 5 shows the color variations noted in the

first batch of samples put into storage. Table 6 gives color variations

noted in the second batch. Why a difference between the color

variations in Tables 5 and 6 occurs is unknown.

4. Summary and Recommendations

This study did not determine the lower pH limits of growth

for A. niger. However, as seen, the acid pH where growth still occurred

may be too low for human consumption. The results also indicate that

the acid used for pH adjustment may affect the metabolism and growth

of mold. The acids tested in this food over the range of pH 4.2--5.0

slow the growth of mold at aw 0.85, however, the inhibition is not as

significant as with the antimycotics. Thus, the acidulants should not

be considered as microbial inhibitors in themselves. When used in

combination with microbial inhibitors such as glycerol, propylene

glycol or potassium sorbate as seen in Section III, B., the antimycotic

effect of acid is significant. It is recommended that acids themselves

cannot be used as antimycotics in intermediate moisture foods.
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TABLE 5

MORPHOLOGICAL APPEARANCE OF A. NIGER IN HENNICAN

AFTER 7 WEEKS AT 22 0 C (aw 0.85)

(Mycellium/spore color)
Acid 1% 2% 4%

Adipic white/none white/none

Citric white/black (few) white
yellow/black yellow/black

Fumaric yellow/black white

yellow/black

Lactic white/none white/none

Control white/black
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TABLE 6

MORPHOLOGICAL APPEARANCE OF A. NIGER ON HENNICAN

AFTER 2 WEEKS AT 22C (aw 0.85)

(Mycellium/spore color)
Acid pH 4.2 pH 4.6 pH 5.0

Adipic white/black white/black white/black

Citric white/black white/black white/black

Fumaric white/black white/black white/black

Lactic white/black white/black white/black

Phosphoric white/black white/black white/black

Control white/black white/black white/black
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E. The Effect of aw on the Heat Resistance of Vegetative Cells

in the IMF Range

1. Introduction

The lowering of moisture content and water activity has

a pronounced effect on the heat resistance of microbes. There is much

evidence in the literature to support this. Troller (1973) showed this

in a review on bacterial pathogens. Murrell and Scott (1966) found

that the heat resistance of Cl. botulinum spores in the dry state was

greater than when held in water vapor at an aw of 1. However, the

maximum resistance to heat occurred in the aw range of 0.2 to 0.4.

No theoretical basis could be found for this maximum, however, it must

be related to the monolayer value. Harnulv and Snygg (1972) found that

above a concentration of 55.8% glucose solution, spores of B. subtilis

had an increase in heat resistance. This would correspond to aw 0.85.

Salmonella species, because of their pathogenicity, have

been the subject of much research with respect to aw. Goepfert et al.

(1970) found that for seven Salmonella serotypes and E. coli the heat

resistance increased with a decrease in aw to 0.75. On the other hand,

Baird-Parker et al. (1970) showed a decreased resistance for certain

strains at about aw 0.94. At lower aw, however, the heat resistance

increased. The slight decrease in heat resistance is opposite of the

effect on the spores reported above, but occurred only in the very

high a, range. Kadan et al. (1963) have also shown this reversal in

the heat resistance of S. aureus in sugar solutions. Heat resistance

decreased as sucrose increased to 14%; above that (up to 57%) sucrose

gave a protective effect. Gibson (1973) also showed a decrease in heat

resistance in vegetative cells down to about aw 0.84 with a slight
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reversal. The reasons for the change in heat resistance have never

been explained and make it difficult to predict death of microbes as

a function of aw, especially during spray drying and extrusion processing

of foods in which aw and temperature can be continuously changing.

The purpose of this study was to determine the effect of aw on the

death of vegetative cells over a wide range of water activities.

Studies were made on the effect of glycerol as an a,

lowering agent on the heat resistance of Saccharomyces cerevisiae,

Salmonella anatum and Staphylococcus aureus. This was done to determine,

over a wider range of aw, the effect of aw on heat resistance of

vegetative cells. These results could then be used to verify the

predictions made by Labuza et al. (1970) for death during processing

of foods containing pathogenic vegetative cells. In addition, if

pathogens have a heat resistance similar to yeast, the effect of simul-

taneous drying and heating on death could be studied without the need

of a sealed pathogen room.

2. Materials and Methods

a. Test procedure

Saccharomyces cerevisiae ATCC 7754 was grown in

nutrient broth at 700F on a shaker at 300 rpm for 48 hr. The cells

were concentrated by centrifugation, washed and suspended to give a

count of about 109 CFU/ml. The test medium (99.9 ml) comprised of

a mixture of glycerol and sterile skim milk at the desired aw was

transferred into a sterile 125 ml flask in a model FK2 Haake water

bath. A sterile magnetic stirring bar was put into the flask to

facilitate mixing. Four temperatures were used (25, 55, 57 and 600C
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+ 0.05). After temperature equilibration, 0.1 ml of the suspension

was introduced directly into the test solution by means of a 100 P1

liquid syringe to give an initial count of 104 to 105 CFU/ml. At

selected times 0.1 ml was removed, diluted in phosphate buffer and

plated by the surface spread technique on potato dextrose agar and

counted after 48 hours at 350C. The plate counts were plotted on

semilog paper vs. time. The death rate constant k (min-1) was calculated

as the slope of the straight line found. This is theoretically equal

to 2.3 times the reciprocal of the decimal reduction time.

The same technique was used for the two pathogens,

Staphylococcus aureus (196E) and Salmonella anatum (NF3). These were

grown for 24 hr at 370C in 100 ml TSYB, centrifuged, suspended to

give a population of around 109 CFU/ml. The thermal inactivation study

was carried out in glycerol-BHI broth with an initial population of

106/ml. Samples were taken at 5 min. intervals, diluted in peptone

water and the organisms were plated by the surface spread technique

on TSYA. The data were treated the same way to get D, the decimal

reduction time, and k, the death rate constant.

b. Test solutions

Sterile skim milk (9% solids Mid America Dairy) or

Brain Heart Infusion (BHI) was mixed with glycerol in the combinations

shown in Table 1. The aw was measured directly in the vapor pressure

manometer. A water activity below about 0.24 could not be used in the

heat resistance studies because the high viscosity of the solution prevented

rapid mixing with the magnetic stirrer.
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TABLE 1

DEPRESSION OF Aw IN TEST SYSTEMS BY GLYCEROL

Glycerol Glycerol Glycerol--
Percent BHI -- Milk Mixture
by Weight Measured aw  Measured a,

0 0.999 0.999

20 0.95

30 ---- 0.87

40 0.87

50 0.83 0.76

60 0.77

63 ---- 0.67

70 0.68

75 ---- 0.50

80 0.53

82 ---- 0.47

90 0.35 0.29

95 0.24
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c. Effect of dilution stress on cell death

Preliminary studies on death of vegetative cells

indicated that the dilution blank used might have some effect on the

viable counts of dehydrated cells from spray drying. Supposedly, to

detect the effect of a stress treatment, no further stress should be

imposed on the cells after the treatment in the medium. Thus, the

dilution blank should be cooled for heat-treated cells. Following

this, it seems in order that some osmotic stress or shock might occur

in plating cells that are dehydrated or heated at various aw's. In

fact, it was frequently found that the viable count in direct plating

without any dilution was more than 10 times higher than found by

plating of the first dilution. In some cases, the viable count from

direct plating was too numerous to count while that from the first

dilution was less than ten for the same sample size. It was hypothesized

that osmotic shock of the cells heated in glycerol at various aw's

might occur in the dilution blank if the water activity of the dilution

blank was different from that of the heating medium. With this in

mind, an experiment was conducted to determine the significance of the

"dilution blank effect."

A set of glycerol-peptone water dilution blanks were

made. It was assumed that the same weight percentage of glycerol in

both BHI and peptone water would give the same water activity. Table 2

shows the composition of the 9 ml glycerol-peptone water dilution

blanks at various water activities.

Salmonella anatum NF3 was chosen for this study as it

is the least resistant to aw stress. The organism was introduced at
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TABLE 2

COMPOSITION OF GLYCEROL-PEPTONE WATER

DILUTION BLANKS AT DIFFERENT Aw LEVELS

ml of glycerol ml of peptone water

1.00 0 9.0

0.95 1.5 7.5

0.87 2.4 6.6

0.83 4.0 5.0

0.77 4.91 4.09

0.68 5.86 3.14

0.53 6.86 2.14

0.35 7.90 1.10

0.24 8.44 0.56

0.01 9.0 0
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106 CFU/ml into the BHI-glycerol solutions at 52
0C and an initial

sample and samples for every five min heating time were taken.

Appropriate dilutions were made in both peptone water and glycerol-

peptone water using a dilution blank at the same aw as the heating

medium and plated immediately by the surface-spread method on TSYA

plates. The plates were inverted and enumerated after incubating 18

hr at 370C.

3. Results and Discussion

Table 3 shows that the initial count decreases steadily

with the increase in weight percentage of glycerol in the glycerol-

BHI heating solution based on a decrease in water activity. As seen,

when glycerol is not used in the dilution blank, at low aw's there is

an immediate two-to six-fold increase in death. This indicates the

sum of all the stresses including osmotic shock and suggests the need

for use of proper dilution blanks. This was not done with the yeast

study which follows. The data also indicate that stress occurs without

heating,. since the data are from zero time at 520C.

Table 4 shows the ratio of the D values (decimal

reduction times) at 520 C as a result of using the two different dilution

blanks. As seen, at high aw the difference is small with more death

in the non-glycerol system as expected. The difference becomes more

pronounced at lower water activity, but is always less than one logarithm

cycle. Thus, even though a dilution stress exists, its effect is not

as large as first thought. Data on the other cells have not been collected.

Studies on death were thus made without the use of a dilution blank at

the same aw .
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TABLE 3

EFFECT OF DILUTION BLANK ON DEATH OF SALMONELLA ANATUM

INTRODUCED INTO DIFFERENT Aw SOLUTIONS

520C at zero time

Relative Count *
Heating Peptone water Glycerol-peptone Ratio of counts in
BHI solution dilution blank water dil. blank glycerol-pep. to

aw  pep. H20 dil. blank

1.00 1 1 1

0.95 0.833 1 1.20

0.87 .1.083 1.083 1

0.83 0.708 0.691 0.976

0.77 0.60 0.817 1.361

0.68 0.342 0.517 1.512

0.53 0.275 0.508 1.848

0.35 0.175 0.342 1.952

0.24 0.0667 0.242 3.625

0.01 0.0342 0.208 6.098

* - ratio to count at 0% glycerol
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TABLE 4

D Values for Different Dilution Blanks at 520C for Salmonella anatum NF 3

D1 (min) D2 (min)

a at 230C Peptone water Glycerol-sterile H20 D2/D 1
W dilution blank silution blank

0 6.8 8.8 1.79

0.35 11.8 22.0 1.86

0.53 14.6 39.0 2.67

0.77 25.7 36.3 1.41

0.87 20.7 28.0 1.35

0.95 10.4 10.4 1.0

1.00 3.10 3.10 1.0

* (based on one run)
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The results of the thermal inactivation studies on

Saccharomyces cerevisiae, Salmonella anatum and Staphylococcus aureus

are shown in Figures 1, 2 and 3. An increase in k means a greater

death rate (smaller decimal reduction time). From the pure skim milk

or BHI medium, as glycerol is added (decrease in aw to 0.76-0.85) the

heat resistance increases for all the test organisms. This is as

would be expected for spores and was also found for the pathogenic organism

studies cited in the introduction. However, at lower aw the heat

resistance decreases.

Acker (1963) has shown that the rate of enzymatic

reactions decreases as aw is decreased and Labuza (1971) has shown

this for other reactions. Possibly the binding of water reduces the rate

of the reaction causing death, or the glycerol itself stabilizes any

labile macromolecules since it helps to structure water. Glycerol

itself does not cause death of the cells in this water activity range

(0.99-0.75) as seen in Table 3 at 520 C and in Table 5 at 250C. The

diffusion of glycerol into the cells should not be much greater at 50-600C

than at 250 C since diffusion rate increases as a function of the square

root of temperature in absolute degrees.

Below aw 0.75, the heat resistance decreases significant-

ly becoming close to that at the high aw (0.99). In this region, the

glycerol itself may be having an effect on the cell. This is obvious

for the Salmonellae at high temperature (520C), as seen in Table 3, since

the counts immediately.began dropping rapidly. Table 5 shows these

results for the yeast at 250C. However, the effect does not become

obvious until an aw below 0.5 is reached after 3 hrs holding time, a
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Figure 1. Death Rate Constant for Saccharomyces cerevisiae as
a Function of aw (Glycerol Solutions) and Temperature..
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Figure 2. Death Rate Constant k as a Function of Temperature and
Water Activity (S. anatum NF3 in BHI-Glycerol Systems)
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Figure 3. Death Rate Constant k as a Function of Temperature and
Water Activity (. aureus 296E in BHI-Glycerol Systems)
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TABLE 5

EFFECT OF GLYCEROL ON SACCHAROMYCES CERERVISIAE AT 250 C (VIABLE CELLS PER ML)

Incubation Control Glycerol- Solutions aw
time skim milk Milk Test 0.76 0.67 0.50 0.47 0.29

0.87

Zero 5.5 x 104  6.0 x 104  5.2 x 104  3.5 x 10 3.9 x 10 3.1 x 104  2.7 x 104

2 min. ----- 6.0 x 104 5.0 x 104 3.4 x 10 4  3.9 x 10 3.0 x 10 2.7 x 10

3 hour 5.5 x 10 4  6.2 x 104 4.6 x 104 1.5 x 10 4  5.1 x 103  6.4 x 102  4.0 x 101

24 hour 6.6 x 105 3.8 x 10 6.8 x 103 2.3 x 102 <30 0 0



time much longer than that used in the heating studies. Thus, some

other factor such as osmotic stress in combination with the 
heat stress

decreases the cell resistance.

As noted, Murrell and Scott (1966) found a maximum in

heat resistance for spores at 0.2-0.4 aw. Other work with vegetative

cells never covered the full range, so only the increase in resistance

was shown down to an aw of about 0.74-0.84 where the maximum was found

in this study. Possibly the difference in the maxima between the

studies could be due to a sorption hysteresis effect. The spore study

was done with dried spores re-equilibrated to different aw's on the

adsorption branch of the isotherm whereas the yeast study would constitute

a desorption isotherm. Labuza et al. (1972) and the work in Section

III, A. show that sorption hysteresis can have an effect on the limiting

a for microorganisms. This could partially account for the difference

found. Further work is needed to clarify this. Another important

factor as seen in the figures is that the yeast used dies at a rate

about ten times faster than the pathogens. This suggests, therefore,

that yeast cannot be used in extrusion or drying studies as an indicator

as had been hoped.

With respect to cell death, Schmidt (1954) stated that

the only single practical criterion is the failure to reproduce when,

as far as is known, suitable conditions for reproduction are provided.

Pflug and Schmidt (1968), in discussing the death of microorganisms,

recognized that a lethal agent can prevent the cell from reproducing

either by a direct effect on the reproductive mechanism or by disrupting

cellular metabolic systems that provide energy and chemical intermediates
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for reproduction. Although in their discussion, the lethal agent is

heat, there is little ground to suspect that this cannot be extended

to osmotic dehydration or hydration stresses as seen in this study.

While adequate conditions for handling or recovering

heat-treated cells are well-known, this is not the case for

cells after an osmotic or aw stress. As shown, the dilution blank

probably is a dilemma for those who want to study the effect of water

activity on the cells. What is needed is an osmotic stabilizer, namely,

an agent which will neither impose further dehydration stress nor

cause the bursting of the cells during the transfer of dehydrated cells

to a higher water activity environment. The same problem apparently

can exist in the study of the change in cell morphology in preparation

for electron microscopy studies since dehydration is one of the preparative

steps leading to the fixation of cells for freeze-etching.

However, this study reveals that the real situation

is not entirely pessimistic with respect to the interaction between

aw and death rate constant. Ideally, it can be felt that the death

rate will be within one order of magnitude no matter which dilution

blank is used. This is equivalent to saying that survivor curves obtained

from different dilution blanks will be parallel to each other. The

parallel property of survivor curves from different dilution blanks

is based on the assumption that the death of cells due to dehydration

and/or hydration stress (osmotic) is, again, first order. Thus, the

same fraction of cells will be destroyed in the dilution blank at one

water activity over different time periods of heating.
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Since the main problem is the dilution blank, this

problem can be eliminated by not using the dilution blank at all. One

possibility is by using multiple sets of heating menstruum with the

same water activity in which different initial populations are injected

such that survivors from each heating menstruum at different time

periods will be able to be counted without dilution. This is not

only laborious but the error induced probably will outweigh that caused

from using dilution blanks.

With no tenable method to recover dehydrated cells,

the present peptone water dilution blank probably furnishes a good,

reasonable estimation of survivors. This is further justified by the

fact that in real food systems, thermal death studies of microorganisms

are always completed by using common dilution blanks such as phosphate

buffer or peptone water. Since the water activity is usually changing

during processing of foods, not like the constant water activity in this

study, a pertinent selection of a dilution blank, of course, will be

a common one before any "osmotic stabilizer" is found.

4. Summary and Recommendations

This study shows that for vegetative cells including the

pathogenic species Salmonella anatum and Staphylococcus aureus, the

heat resistance is at a maximum value in the intermediate moisture

range of liquid medium. Although this has not been studied in a solid

food system, it would be expected that the same conditions would exist.

Thus, it is recommended that components such as meat, eggs, etc. which

are at high aw should be heat pasteurized prior to combination with the

aw lowering agents and other dry food components. This would insure

maximum kill and minimum use of energy during final processing.
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IV. Non-Enzymatic Browning in Model Food Systems

A. Introduction

Non-enzymatic browning is a common reaction occurring in many

foods. Its qualitative results are either beneficial or deleterious.

Browning may be beneficial during the commercial production of syrups

or caramel colorings, the browning of bakery products, or the roasting

of coffee or meat. Here desirable color, flavor and aroma changes

are realized. Conversely, browning of foods may be deleterious. The

oxidation of vitamin C during the processing or storage of concentrated

citrus juices, the degradation of sugars when they are exposed to

excessive heat, or the flavor, texture, visual and nutritional changes

observed in a proteinaceous carbohydrate-containing food undergoing

Maillard browning are all examples of non-beneficial changes induced

by the browning reactions.

Naturally, the beneficial browning reactions are not a problem

for the food industry, however, the deleterious browning reactions are

cause for concern. The control of the deleterious reaction is desirable,

but such control is not always attained. Of the various types of non-

enzymatic browning reactions, the Maillard reaction presently appears

to be the most complicated and hence the least understood and controlled.

This is particularly true in low moisture food systems and is especially

true for the ever-expanding market of intermediate moisture foods.

Qualitatively, Maillard browning has been indicated as the

primary mechanism for causing excessive brown discoloration with a

concomitant loss of protein quality. The degree of these qualitative
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changes as a function of food composition, method of food preparation

and processing and storage conditions has not been characterized for

true intermediate moisture foods. As the market for intermediate moisture

foods grows, so will the need for the characterization of the Maillard

browning reaction as it affects the quality and overall acceptance of

intermediate moisture foods. Specifically, what is needed is the

kinetics of non-enzymatic browning in intermediate moisture foods.

The kinetics of substrate utilization or melanoidan pigment production

as a function of moisture content or water activity would prove useful

to the intermediate moisture food manufacturer. A model system would

facilitate the collection of such kinetics data. This kinetics data

could then be applied to real food systems. From this suggestions for

the control of undesirable Maillard browning in intermediate moisture

foods could be made.

B. Materials and Methods

1. Model system preparation

A casein-glucose model system was developed to study the

kinetics of non-enzymatic browning in intermediate moisture food systems.

The formulation is shown in Table 1. Casein is used as the protein

source and glucose is added as the source of reducing sugar. Potassium

sorbate is added to prevent microbial growth. A range of aw from 0.32

to 0.90 was chosen so that a possible maximum in browning rate would

fall in between. For example, Loncin et al. (1968) found a maximum in

browning at about 0.65 for non-fat dry milk, however, they did not

measure the kinetics of the reaction. Unless noted otherwise, components

were mixed together in descending order of listing in Table 1. Water
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TABLE 1

MODEL SYSTEM COMPOSITION

Component Grams

K-sorbate 0.3

Glucose 10.0

Glycerol 20.0

Casein 30.0

Apiezon B Oil 20.0

Microcrystalline
cellulose 20.0

Water Variable
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was added in two ways. A predetermined amount of liquid water was

blended into the mixed non-aqueous components for the direct mix

(DM) system. The DM systems were then stored in desiccators in vacuo

for one day at room temperature over appropriate saturated salt solutions

for final moisture equilibration. The humidified mix (HM) systems

were brought to proper moisture content by storing the blended dry

components in desiccators in vacuo over appropriate saturated salt

solutions held at room temperature (23
0 C). These systems were humidified

for 3 to 6 days until proper moisture content or a, was obtained.

Following the HM or DM equilibration time, 25 gram

quantities were placed in 202 x 214 epoxy lined tin cans, the cans

were sealed and the newly sealed end was dipped in Glyptal to retard

sample moisture loss should the can seal not be perfect. The cans were

then placed in an incubator at 25, 35 or 45
0 C. Samples were then periodi-

cally analyzed for extent of Maillard browning by measuring melanoidan

pigment production and glucose disappearance.

2. Non-enzymatic browning pigment production (procedure

modified from Choi et al., 1949)

a. To 2.00 g sample, add 2.5 ml of 10% (w/w) Trypsin solution

and 20 ml phosphate buffer (pH 7.8).

b. Incubate system for 2 hr at 450 C under 120 CPM agitation.

c. Following the incubation period, trypsin is denatured

by adding to it 2 ml of 50% (w/v) Trichloroacetic acid (TCA).

d. Add 0.1 g Celite (filter aid).

e. System is filtered through Watman #1 filter paper.
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f. Absorbancy of filtrate is read at 420 nm against a

reagent (sample-free) blank.

g. Browning is reported as absorbancy at 420 nm per 1.0

g solid.

3. Glucose content (utilization)

Glucose content is measured with a Glucose Oxidase (GOD)

Blood Sugar test kit (Boehringer Mannheim Corp., New York, Cat. No.

15756). {Method: Werner, W., H.G. Rey and H. Wielinger. 1970. Z.

Anal Chem. 252: 224}.

a. Extract glucose from model system by shaking 3 g sample

in 100 g water for one hour (room temperature, 180 CPM). Filter

contents through Watman #1 filter paper. Analyze filtrate.

b. To 10 pl extracted filtrate, add 5 ml buffered glucose

oxidase-peroxide test solution. Mix well.

c. Incubate system for 25-40 minutes at room temperature.

d. Read absorbancy at 600 nm against reagent blank.

e. Measure absorbancy of test-kit standard.

f. Glucose content is calculated thusly:

Abs sample x 176 = mg glucose/3 g sample
Abs standard

Glucose content is expressed as g glucose per 100 g

solid.

4. Water content and activity

Moisture content was measured with the methanol extraction

GLC technique. Water activity (aw) was measured by the vapor pressure

manometric technique.

-161-



5. Available lysine and reducing value

The method of Booth (1971) was utilized for determining

FDNB-available lysine. The method of Lund (1968) was used for Fehling's

reducing value test. Unfortunately, neither the available lysine or

reducing value data gave meaningful results. Therefore, available

lysine and reducing value results will not be presented in this report.

C. Results and Discussion

1. Moisture hysteresis data

The moisture content-aw data is shown in Table 2. As shown

in Figure 1, significant moisture hysteresis does not occur between the

DM and HM systems. This was found at all temperatures. Thus, the method

of moisture addition as employed in these runs does not cause moisture

hysteresis.

Because the model systems employed in these runs do not

exhibit moisture hysteresis, the influence of moisture hysteresis on

the kinetics of non-enzymatic browning could not be studied. However,

it was still possible to study the effect of method of moisture addition,

that is DM vs. HM, on the kinetics of Maillard browning in intermediate

moisture foods.

2. Non-enzymatic browning pigment production

a. NEB pigment production at 450C

The results of browning as measured by production of

pigment at 450C are shown in Figures 2 and 3. Following a short induction

time of less than three days, pigment production is linearly related

to storage time. The browning rates are tabulated in Table 3 and, as
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TABLE 2

NEB STUDY MODEL SYSTEM

Aw - MOISTURE DATA

a of
salt 450C System 350 C System 250 C System

System solution aw g H20/ aw  g H20/ aw g H20/
(humidifi- 100g solids 100g solids 100g solids
cation)

DM --- -- ---- .32 6.31 --

DM --- -- ----- .41 7.67 --

DM --- .56 10.62 .51 11.20 .67 13.81

DM --- -- ----- .62 16.62 --

DM --- .73 20.82 .73 23.53 .74 20.48

DM --- .88 44.37 .87 43.89 .84 31.87

DM --- -- -- .90 45.70

HM .33 -- .32 6.50 --

HM .43 -- ----- .43 8.38

HM .52 .55 10.41 .53 11.80 --

HM .67 -- .65 17.10 .71 17.37

HM .75 .75 21.06 .72 22.82 .75 21.06

HM .85 -- -- ----- .82 30.60

HM .90 .83 34.83 .80 31.13 .86 39.66
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TABLE 3

RATES OF NEB PIGMENT PRODUCTION

450C 350 C
System Rate* System aw Rate*

DM .56 51.7 DM .32 9.48

DM .41 11.58

DM .73 41.2 DM .51 10.80

DM .62 10.83

DM .73 8.38

DM .88 26.4 DM .87 4.42

HM .55 50.0 HM .33 9.33

HM .43 11.67

HM .53 11.00

HM .75 41.2 HM .65 9.00

HM .72 8.23

HM .83 28.7 HM .80 6.67

* Rate = A Abs. 420 nm x 10+
3

g solid - day
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seen within the range of aw's tested, the rate decreases with increasing

aw. This could be due to the fact that the water may dilute the reactants

of non-enzymatic browning such that as aw increases, reactant dilution

occurs. This observation, in this range, is opposite of what is observed

in many food systems. For many foods, browning rate usually reaches

a maximum approximately at an aw of 0.70--0.75 and then decreases.

This shows that system components may completely change the interaction

with water. This is further illustrated in Figure 4 where the rate

is plotted vs. moisture and vs. aw. Figure 4 indicates that over the

moisture contents studied, an approximately linear relationship exists

between browning rate and moisture content. Both direct mix (DM) and

humidified mix (HM) systems brown at approximately equal rates when

contrasted at equivalent moisture contents. Therefore, it appears

that the method of moisture addition, that is DM vs. HM, does not alter

the rate of pigment production. The moisture content per se controls

the rate of browning under the conditions of this test. The same pattern

exists with respect to aw, although a linear relationship does not exist.

These results rule out a viscosity effect. A reduction

in aqueous phase viscosity occurs as a, or moisture increases. If

diffusion of the reactants were limiting, then the rate should increase

with an increase in moisture content. In other studies utilizing model

systems in the same aw range, both lipid oxidation (Chou and Labuza,

1974) and ascorbic acid oxidation (Lee and Labuza, 1974; Section II, A.)

have been shown to be controlled by the viscosity of the aqueous phase

since the rates increased with aw above the monolayer. Obviously, this

is not the case for browning in this aw range. One final observation
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Figure 4. Rate of Browning as a Function of aw and Moisture Content (g H20/100 g solids)
for desorption (DM) and adsorption (IM) systems.
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drawn from the results at 450 C is that the variability of browning

values increases as pigment accumulation increases, especially at

aw 0.88. As pigment accumulation proceeds to high levels, the reactive

amino groups undergo polymerization to the extent that enzymatic

digestion and/or aqueous extraction of the pigments from the product

matrix is impaired. Falk (1956) and Tu and Eskin (1973) have shown

that trypsin, which is the digestive enzyme used in the above procedure

for determining pigment production, has impaired activity when Maillard

browning is excessive. Reynolds (1965) also states that initially

the malanoidan pigments are water soluble but become water insoluble

as the Maillard browning reaction proceeds. This can be seen in the

present results.

b. NEB pigment production at 350C

Non-enzymatic browning pigment production results

for the 350 C system are shown in Figures 5 and 6. As before, after

an initial induction period the rate of browning is constant. The

rates are tabulated in Table 3 and follow a similar pattern as found

at 45 C. As aw decreases, browning rate increases over the same a,

range between both temperatures. However, as aw is lowered beyond

the lowest aw studied at 450 C, a true maximum browning rate is observed.

Figure 7 shows that the browning rate at 350C reaches a maximum at

about aw 0.43. What is quite unusual is that this is close to the

monolayer aw of about 0.25. Based on these results, water at low a

could be controlling the reaction rate by controlling substrate

concentration, mobility and solubility. A lowering of moisture content

can cause increased substrate concentration and therefore, increased
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browning rate. However, as moisture content is lowered beyond a

critical level, substrate mobility probably becomes impaired and

the substrate can precipitate out. As the effect of limited substrate

mobility and solubility exceeds the effect of substrate concentration,

browning rate will decrease as moisture content is further lowered.

At the point where the effects of substrate mobility, solubility

and substrate concentration are equal, a maximum browning rate should

be observed. The data at 350C indicate that this occurs at a 0.43,

which is a moisture content of approximately 8 g H20/100 g solids.

The 0.43 a value is considerably lower than the 0.70 aw value considered

to be the usual level at which a browning rate maximum is observed

in dehydrated foods. This unusual effect can be attributed to the

uniqueness in composition of the system. Glycerol can solubilize

glucose and thus must be acting as part of the aqueous phase. This

could be the case with any intermediate moisture food to which a high

level of humectant is added. The browning rate at 350C, as seen in

Figure 7, is approximately linearly related to moisture content above

the rate maximum. This indicates that moisture content thus controls

the browning rate. It also appears that the method of moisture addition,

be it through the humidified mix or the direct mix method, does not

significantly influence browning reaction rate.

c. NEB pigment production at 250 C

Browning pigment results for the systems stored at

250C are shown in Figure 8. The data indicate that the Maillard

non-enzymatic browning reaction has not progressed much beyond the

induction phase. The browning data have not yet become differentiated
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Figure 7. Rate of Browning as a Function of aw and Moisture Content (g H20/100 g solids) at 35°C
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Figure 8. Increase in Browning (absrobance) as a Function of
aw and System Preparation at 250C. DH - desorption, HM - adsorption.
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enough so reliable rate constants can be determined. However, the

trend of increased browning rate with decreased aw is starting to be

established. A longer storage time at 250 C is needed to establish

accurate conclusions.

d. Effect of temperature

The rates of 35 and 450 C were plotted in Figure 9

to get a measure of the activation energy at constant moisture contents.

Since only two temperatures are available, the results are not accurate;

however, they give some indication of the relative activation energy.

A value of 28.9 Kcal/mole was found which gives a Q10 of about 5x.

Thus storage at 450C accelerates the reaction 25 times faster than

at 250C.

3. Glucose reaction

To gain further insight into the kinetics of non-enzymatic

browning, it would be useful to also observe the kinetics of reactant

utilization. As glucose is the only reducing sugar used in the model

system in this study, glucose content can be monitored as an indicator

of reactant utilization as storage time and browning progress. Results

of glucose destruction for the samples stored at 25, 35 and 450C are

shown in Figures 10, 11 and 12 where glucose concentration is plotted

as a first order reaction. Since browning occurred rapidly at 450 C

with an almost negligible induction time, glucose content should rapidly

decrease as glucose is used from the start of the browning reaction.

Figure 10 shows that an appreciable amount of glucose is reacted after

only a few days of storage at 450 C. The expected less rapid loss of

glucose at 25 and 350C is also seen as compared to 450C. The calculated
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destruction rate constants for glucose loss are shown in Table 4.

The rate constants were derived from regression analyses (least square

method).

Glucose loss follows the expected first order rate during

the initial period of pigment production but thereafter deviates to

a lower rate. Because of this, rate constants were derived from the

initial days of storage. The storage time utilized for the regression

analyses of glucose loss were days 0 through 10 for 450C, days 0 through

49 for 350C, and days 0 through 114 for 250 C. The Arrhenius activation

energy values of initial glucose destruction were obtained from regression

analyses of the log kG vs. 1/T plot (Figure 13, where kG is equal to

0.693 divided by the half life). The values are reported in Table 4.

As seen, the average Ea is 25.54 Kcal/mole, a value near that for

non-enzymatic pigment production as would be expected if the first

step is the controlling rate limiting step of non-enzymatic browning.

Since accurate data at only two temperatures are available for

browning, a direct comparison could not be expected.

The results of glucose loss follow the same pattern as

observed for pigment production with respect to aw. A greater loss

occurs at the lower aw or moisture content as seen in Figure 14.

Since the drier systems react more rapidly than do the high aw systems,

glucose solubility is not an influencing factor on the rate of Maillard

browning at aw's above the rate maximum. If solubility were a factor,

one would expect a greater concentration of reactable soluble glucose

to be present as moisture is increased. What is unusual is that a

saturated solution of glucose has an aw of 0.915. Thus, sugar must
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TABLE 4

INITIAL GLUCOSE DESTRUCTION RATE CONSTANTS

450 C 350C 250 C
System aw  Kg (day- ) aw  Kg (day- 1 ) a w  Kg (day-IT

DM .56 .0618' .51 .0168 .67 .0029

DM .73 .0370 .73 .0111 .74 .0024

DM .88 .0131 .87 .0066 .84 .0016

DM -- -- -- -- .90 .0009

HM .55 .0583 .53 .0161 .71 .0026

HM .75 .0334 .72 .0123 .75 .0023

HM .83 .0217 .80 .0098 .82 .0019

HM -- -- -- -- .90 .0011

Activation energy (Kcal/mole:

12.5 g H20/100 g solids Ea = 26.3

20 g H20/100 g solids Ea = 25.3

30 g H20/100 g solids Ea = 25.0
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be dissolved in the glycerol as well. The fact that there is no break

in the activation energy plot (Figure 13) also indicates solubility

is not a problem. Table 5 shows that temperature strongly affects

glucose solubility but this does not affect the rate. Thus, water

must have some other effect.

Eichner and Karel (1972) have shown that the rate of

browning in glycerol-containing systems can be limited by the feed-

back inhibitory effect of water that is produced during the browning

reaction. Therefore, the browning rate, or glucose destruction rate,

would decrease with aw . Such is the observation in this study; however,

if the feed-back inhibitory factor of water is to be considered as

a major factor controlling browning rate, the rate of browning at

any given aw would not be constant but should decrease slowly with

reaction time. Browning rates as measured by pigment production do

not decrease with reaction time. However, following the initial first

order reaction period, the glucose destruction rate at any given aw

does tend to decrease with reaction time. This decreasing rate of

glucose destruction could be due to the feed-back inhibitory effect

of the produced water since water is produced in the first step involving

glucose. What this seems to suggest is that there is an excess of reactable

glucose to amine. Thus, water is a product of the first condensation

reaction and hence slows that rate, however, enough reducing compounds

are being formed to maintain a constant rate of pigment production.

The kinetics of the reaction according to the results

found can then be established. The rate of browning is a constant

which decreases as moisture content increases thus:
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TABLE 5

GLUCOSE SOLUBILITY

Temperature g Glucose/ml H20

25 .91

30 1.25

50 2.44

70 3.57

90 5.55
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dB _ kR*)=
- kBde Mc

where B = browning value
kB = overall rate constant
k = pseudo-rate constant
Mc = moisture content
R* = reactable reducing sugar
8 = time

The first steps in browning involve the formation and subsequent

degradation of a Schiff's base which in this case is a glucose-amine

reaction product. This then reacts to produce R* which is the reactable

reducing sugar content. The glucose to primary amine ratio is 4.8:1.0,

high enough that the rate of browning is unaffected by glucose loss.

Thus, there must be a maximum amount of R* present at all times.

Within the limits of error of glucose measurement (+ 1 g glucose/100

g solids), the results indicate that glucose is being initially destroyed

by a first order reaction. The amine should be given up initially,

but would later be tied up by some mechanism as it is incorporated

into the pigment. It could thus be considered in excess. Over the

initial period then, the glucose is destroyed by a reaction as follows:

dG
dO = kG (G) (P) - kG (S) (M)

where (G) = glucose concentration in aqueous
phase

k = reaction rate constant
(P1 = primary amine content
k = backward reaction rate constant
(S = Schiff's base
(M) = water content

Under the conditions studied, if P does not change appreciably and the

amount of (S) is small, then the loss of glucose can be treated as a

first order reaction as:

dG- = k (G)
d-187 G
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The results show that glucose is initially disappearing by a first

order reaction. The rate of browning over this time period has

remained constant.

Thus, both dilution and inhibition by water are occurring.

Glucose is breaking down to initially form reactable reducing compounds

(R*) in the intermediate steps which lead directly to pigment formation.

After an initial induction period, the (R*) builds up to a level

which leads to a constant browning rate. This R* is dependent both

on the rate of glucose destruction and the total volume of the aqueous

phase. If the phase volume is very high, as occurs with an increased

aw, the concentration of R* that is produced in terms of moles per

liter is less and thus the absolute browning rate is less. The same

occurs with glucose destruction if we assume it is dissolved in the

glycerol-water phase. Above the aw point where a solubility or viscosity

problem occurstincreasing the phase volume by increasing the moisture

content reduces the initial glucose destruction rate. As the Schiff's

base builds up, there is feed-back inhibition and the glucose rate

drops. However, the amount of R* produced from the Schiff's base

remains constant so the browning rate follows a zero order reaction

after an initial induction time.

To further complicate this one could assume that not all

the glucose is in solution. Thus, as some glucose reacts and disappears,

more glucose would dissolve, but at a slower rate. Thus, the first

order would not be followed. Schobel et al. (1969) found this to

be the case for sucrose hydrolysis at aw 0.75 where excess sugar was

added. Karel and Labuza (1968) also had constant browning rates in a
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sucrose-acid-protein system and suggested that the aqueous phase

was being replenished by reducing sugar. According to this hypothesis,

at higher aw more total glucose would be dissolved, however, the

present results show that the browning reaction rate decreases with

a, or moisture. Thus, this theory does not apply.

D. Summary and Recommendations

This study has yielded information on the kinetics of Maillard

non-enzymatic browning in a casein-glucose intermediate moisture model

system. Kinetics of both reactant utilization (glucose destruction)

and end-product accumulation (melanoidan pigment production) have

been presented. In general, the factors that control reactant utilization

also control end-product accumulation.

Specifically, the extent of Maillard browning is directly

proportional to storage temperature and time. The rate of pigment

production, after an initial induction period, is constant with storage

time under the conditions of this study. This rate would be expected

to decrease if storage time was extended for an excessively long

length of time. The data also indicate the usefulness of using an

accelerated reaction temperature. The rate at 450C is over 20 times

faster than at room temperature. Glucose destruction initially follows

first order kinetics. This implies that either there is an excess

of reactable reducing compounds to amine or that, less likely, more

than one glucose moiety combines with a free primary amine group when

glucose content is excessive. Reynolds (1965) gives a mechanism whereby

more than one glucose moiety may combine with one free primary amine

group. The rate of Maillard browning as measured by both pigment
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production and reducing sugar disappearance increases as water activity

or moisture content decreases down to aw 0.43. This implies that

the reactant concentration is controlling the reaction rate influenced

by the available liquid phase. In this region mobility and solubility

are not important.

Below the maximum in browning rate, any further decrease in

moisture content lowered the reaction rate. This rate decrease would

be expected to continue until the BET monolayer of moisture is reached.

That the system of this study showed maximum browning at an aw less

than the aw range (0.70--0.75) that is thought to produce maximum

browning in most dehydrated foods, implies that aw or moisture content

alone may not be controlling browning rate. In this case, reactant

concentration as expressed per total phase (water plus glycerol)

is controlling the reaction rate. Thus, the addition of glycerol

to a food system,in addition to increasing the product's microbial

stability by lowering the aw and increasing the textural appeal of the

product by "plasticizing" the product, increases the total effective

"solvent" volume and thereby decreases reactant concentration.

Naturally, a decrease in effective reactant concentration should decrease

reaction rate. Hence it could be theorized that the addition of

glycerol decreases reactant concentration such that the above glycerol

containing model system at an aw of approximately 0.45 probably

possesses the same reactant concentration as do humidified non-glycerol

containing foods that show an aw maximum for browning at 0.70-0.75 a,.

However, this would not be desirable since the glucose remains in

the liquid phase to a lower aw than in a dehydrated system. One would
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have to compare the effective browning rates in various systems.

Another general conclusion realized from this study is that

the methods of preparation with respect to water addition do not

significantly alter the browning rate. That is, if moisture addition

to the blended "solid" components was by the humidification process

or by direct liquid water addition, the resulting browning rates are

not altered. However, the effect of adding the reducing sugar to

the water prior to adding the solution to the remainder of the dry

solids is not known. This might affect reactant concentration. If

this sample preparation parameter does affect browning rate, shelf

life of foods as determined by non-enzymatic browning could be controlled

not only by environmental storage conditions and food composition,

but also by the method of ingredient incorporation into the food.

A final suggestion for future study is that of investigating

the influence of protein source on overall non-enzymatic browning

rate. As economics or supply might dictate, the protein source for

a food product may have to be changed and could affect the browning

rate. Protein substitution may change the reducing sugar to primary

amine content ratio even though absolute protein concentration is

not altered. Also, the reducing sugar to primary amine ratio might

be constant, however, the degree to which the primary amine groups

are "free" and hence available for condensation with a reducing sugar

may change with protein substitution. Finally, the total parameter

of protein substitution as it affects non-enzymatic browning and

product acceptability could be affected by final moisture content or

a, of the product.
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With respect to processing recommendations, since the rate

of non-enzymatic browning in an intermediate moisture content food

system increases as aw decreases, as high a moisture content as is

possible while yet keeping the food stable against other reactions

should be used. The method of moisture addition does not affect the

rate. The degree of reducing sugar solubility, reducing sugar to

primary amine content ratio, and protein source substitution as they

affect the kinetics of non-enzymatic browning should be studied further

however. The use of a liquid humectant such as glycerol, although

useful for other reasons, may be detrimental because it maintains

the reactants in the liquid phase below their water solubility limit.

Work on the optimum ratio must be done to minimize reaction rates.

Finally, since browning increases as a, decreases a good moisture

barrier is necessary. These results would be useful towards extending

the shelf-life of intermediate moisture foods that are susceptible

to non-enzymatic browning.
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V

MEASUREMENT OF THE PHYSICAL PROPERTIES OF

INTERMEDIATE MOISTURE FOODS



V. Measurement of the Physical Properties of Intermediate Moisture

Foods

A. Technique for Measurement of Water Activity in the High aw

Range at 350C.

1. Introduction

Reprinted on the next pages is a copy of the article

concerning this technique that was published in the Journal of

Agriculture and Food Chemistry 22: 326-327. (1974).
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Reprinted from AGRICULTURAL AND FOOD CHEMISTRY.Vol. 22, No. 2, Page 326, Mar./Apr. 1974
Copyright 1974 by the American Chemical Society and reprinted by permission of the copyright owner.

Technique for Measurement of Water Activity in the High Aw Range

Patricia T. Vos and Theodore P. Labuza*

A method was developed to determine the water the standard microcrystalline cellulose was
activity (Aw) of food systems in the range of 0.85 placed in desiccators containing about 50- to
to 0.98 Aw. The method is based on the equilibri- 100-g food sample and evacuated for 1.5 min.
um moisture absorption of microcrystalline cellu- After 24 hr, the weight gain of the cellulose was
lose at a given temperature. Sulfuric acid solu- measured and the moisture content calculated.
tions of known concentration and A, were used Results show that the method is comparable to
to prepare a standard curve of equilibrium mois- that of the electric hygrometer and considerably
ture absorption us. Aw at 35*. A known amount of better than the manometric technique.

The control of water activity (Aw) in the processing of In this high range of A,'s, measurement by the electric
foods is of major importance in relation to microbial spoil- hygrometer of A, based on the electrical resistance of a
age and growth of pathogens. It is only at the higher A, salt-coated probe is inaccurate and sometimes misleading
range, 0.90 to 0.99, that microorganisms usually grow in (Troller, 1973). Hygrometer probes are accurate to within
foods, and the rate of growth of most microorganisms is :0.005 A, when new, but with age become less accurate
greatly accelerated at the higherA,'s. so they must be recalibrated constantly. They are also

subject to errors due to absorption of volatiles, such as
glycerol, from the food (Block et al.. 1961). Measurement

Department of Food Science and Nutrition. University by a manometric technique as described by Labuza (1974)
of Minnesota-St. Paul, St. Paul, Minnesota 55101. based on the design of Karel and Nickerson (1964) of the

326 J. Agr. Food Chem., Vol. 22. No. 2. 1974
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WATER ACTIVITY

Table 1. A. of Food Samples Obtained 0.22
by Three Methods 0o STANDARD CELLULOSE

Whey 0 35 *C
con- Pan- a
cen- cake

Method Bread Salami trate batter 0.18a

Microcrystalline 0.951 0.969 0.820 0.961 Z
cellulose method 0.948 0.968 0.821 0.960

0.948 0.969 0.820 0.960 0.16
z

Av 0.949 0.969 0.820 0.960

Manometric technique . 0.94 1.00 0.89 0.97 80
0.92 0.98 0.87 1.00

Av 0.93 0.99 0.88 0.99 012

Hygrometer 0.945 0.970 0.805 0.895
0.9566 0.965 0.820 0.871 o.10

Av 0.950 0.968 0.815 0.883
0 .86 0.90 0.94 0.9

One-month old probe used.
A,

vapor space surrounding the food is also inaccurate at Figure 1. Standard sorption isotherm curve for microcrystalline
Aw's greater than 0.90 because of temperature control cellulose at 35 .

problems. An accuracy of *0.005 below 0.85 is expected; to the standard curve (Figure 1) in which A, is plotted vs.
above that, it falls to *0.02. Also, if temperature is not moisture content for the microcrystalline cellulose at
controlled accurately, condensation of water vapor occurs equilibrium. This isotherm was found by measuring the
and the results become meaningless. adsorption isotherm of Avicel over standard sulfuric acid-

Fett (1973) devised a method to measure A, greater water solutions (Wilson, 1940). The exact composition of
than 0.80 in foods based on the equilibrium moisture ab- the sulfuric acid solutions was determined by titration
sorption of standard proteins at a known A. and a given with base. Quadruplicate samples were used in prepara-
temperature. At A,'s greater than 0.95, more than 24 hr tion of the curve. The accuracy is about *0.002 A, as has
was necessary to achieve moisture absorption equilibrium, been found by Fett (1973).
Also, a standard curve had to be made for each new batch
of protein. RESULTS AND DISCUSSION

The present study was conducted to devise a simple A comparison of results obtained by the 3 methods
technique that would give an accurate measurement of (Table I) demonstrates that the microcrystalline cellulose
Aw's greater than 0.90 within 24 hr, based on the equilib- method is comparable to the measurements using a hy-
rium moisture absorption of microcrystallineoaellulose at a. grometer .with a .new sensor..The manometric technique.
given temperature. In addition, cellulose would be better gave results very different from the other two methods.
to use since proteins oxidize with age and change their ab- This was due to the difficulty in preventing condensation
sorption slightly whereas the crystalline cellulose is ex- atthehigh Aw.
tremely stable (Bluestein and Labuza, 1972). In their The microcrystalline cellulose method may be used for
work, they showed the same B.E.T. monolayer for the cel- measurement of Aw's greater than 0.90 and should be
lulose as was found by Maloney et at. (1966) working six more accurate, especially if new hygrometer probes are
years previously, not available. This method is more valuable than the use

of the hygrometer or manometric device since it does not
EXPERIMENTAL SECTION involve the expense of a special instrument. The hygrome-

The A, of several food products was measured using ter probes lose their accuracy with time, as is seen in the
three methods: (1) Hygrodynamics electric hygrometer data for the pancake batter. The probe used was 1-month
(model 15-3001); (2) manometric technique; (3) equilibri- old, and was recalibrated over saturated sodium chloride
um moisture absorption of microcrystalline cellulose (Avi- but still gave a different value than the cellulose method.
cel FMC Corp., Marcus Hook, Pa.). For measurement by This could be due to the volatiles in the batter causing in-
the hygrometer, approximately 5 to 10 g of the food was terference. The larger food sample size (about 10 times
placed in jars which contain the sensor in the cover. They that used in other techniques) is also advantageous in
were allowed to equilibrate at 35* for 24 hr prior to read- that a more representative sample of the food product
ing. The same amount of food was used for A w measure- may be used for the Aw measurement.
ment by the manometric device described by Labuza LITERATURE CITED
(1974). For the new method, the microcrystalline cellulose Block, S. S., RodrquezTorrent, R.. Cole, M. B., Aerospace Di-
was dried in a vacuum oven for 48 hr, 100, 29 mm Hg. vision Technical Report AS 33 (616)-6387, USAF, Wright Patter-
Samples of 2 g (to 0.0001 g) of the standard dried micro- son. Ohio, 1961.
crystalline cellulose were weighed into 35-ml weighing Bluestein, P., Labuza, T. P.. AIChF.. 18,706(1972).
bottles. The cap was removed from the weighing bottle Fett, H., J. Food Sci. 38, 1097 (1973).
and triplicate sampleKare, were placed on the plate in a M. Nickerson. J. T. R., Food Technol. 18, 104 (1964).and triplicate samples were placed on the plate in a Labuza. T. P., in "Physical Properties of Food," Rha, C., Ed..
214.9-cm vacuum desiccator containing 50 to 100 g of the Reidel Press, Dordrecht. Holland, in press (1974).
food sample. The desiccators were evacuated for 1.5 min Maloney, J. F., Labuza, T. P., Wallace, D. H., Karel, M.. J Food
and were placed at 35* for 24 hr. No measurable loss of Sci. 31, 878 (1966).
water occurs in this evacuation time. After 24 hr, air was Troller, J.A.,J. Milk Food Technol. 36, 276(1973).
gradually let into the desiccators over a period of 5 min Wilson, R. E..J. Ind. Eng. Chem. 1, 326(1940)
(at this high temperature, there was no condensation ap- Received for review August 10, 1973. Accepted November 29.
parent). The weighing bottles were capped and wiped dry 1973. This is paper no. 8397 from the University of Minnesota Agri-
prior to weighing. The moisture content was calculated cultural Experiment Station. The research was supported in part

ro to weighin. by the University of Minnesota Experiment Station Project No.
from the weight gain. 18.72 and contract no. NAS 9-12560, Lyndon Johnson Space Cen-

The A, of the food product was determined by referring ter, Houston, Texas.
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B. Standard curve for Isopeistic Technique of aw Measurement

at 230 C

1. Introduction

The aw of various foods may be determined by the isopeistic

method from an established standard curve of moisture content vs. aw

for a standardized material. Preparation of such a curve involves:

a. The set up of desiccator systems with varying

concentrations of the solution to be used to given aw's.

b. A pre-dried powder to be weighed and stored in weighing

dishes within the desiccators under vacuum for a standardized

period of time. Moisture gained by the powder over a designated

period of time at a specific temperature may then be determined

and plotted against the aw of the desiccator. In Section V, A.

such a system was presented for aw measurement above 0.86 and

at 350 C.

In this study, H2SO4 was used due to the fact that concen-

trations of the acid exhibit a consistent relative humidity. Because

of convenience and availability, microcrystalline cellulose was used

as the powder. This study was carried out at 230C and over a wider

range than previously reported.

2. Procedures

a. Twelve solutions of H2SO4 and distilled water were

prepared and titrated with sodium hydroxide.

b. The H2SO4 solutions were placed in desiccators. Two

weighed samples of pre-dried cellulose were placed in dishes
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directly above the solution in each desiccator. A vacuum was

pulled for 1 min and the system was left standing for 24 hr at

230 C.

c. The samples were reweighed and the moisture content

of the cellulose was calculated.

d. To find the aw at 230 C, each solution was titrated

and the aw found from the standard curve of % H2S04 vs. the

relative vapor pressure of pure water (R. Wilson, 1921) as shown

in Figure 1.

3. Results and Discussion

The data of the moisture content of duplicate samples

at the various sulfuric acid contents are shown in Table 1. As can

be seen, variations were not greater than 0.0006 in moisture content

between duplicates and + 0.2 ml for the titration. This gives an

error in aw of + 0.001 in the high aw range (>0.85) and of + 0.0025

below aw 0.85 if the same procedure is used. Below this range, the

method becomes too insensitive since the isotherm is very flat at

this point, as seen in Figure 2 in comparison with the 350 isotherm.

As seen and as should be expected for this high aw range, the isotherms

are similar at both temperatures.

4. Summary and Recommendations

A new and accurate method has been developed for determining

a, in the high intermediate moisture range of foods. Because of the

large sample size of food used, heterogeneity of the food does not

cause errors. It is recommended that where cost is a problem this

method be used.
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Figure 1. Effect of Sulfuric Acid Concentration on
Water Activity of the Solution.
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TABLE 1

ISOPEISTIC-CELLULOSE METHOD RESULTS AT 230C

Moisture
Initial % H2S04 Titrations* content Average Average

g H20/100 %RH moisture % RH
g solids content

6.0 5.60 0.177 98.5 0.1775 98.45
5.64 0.178 98.4

15.0 13.57 0.141 93.8 0.1415 93.65
13.66 0.142 93.5

18.4 17.57 0.124 89.9 0.124 89.85
17.64 0.124 89.8

20.5 19.65 0.117 88.5 0.116 88.15
19.52 0.115 87.8

25.0 23.68 0.094 82.9 0.0935 82.85
23.73 0.093 82.8

28.5 27.38 0.086 78.0 0.086 77.325
27.63 0.086 77.65

34.5 32.73 0.075 69.75 0.075 69.755
32.72 0.075 69.76

35.6 34.81 0.069 66.4 0.069 66.45
34.71 0.069 66.5

37.0 35.69 0.074 64.8 0.074 64.6
35.97 0.074 64.4

38.3 37.13 0.074 62.4 0.073 62.45
37.00 0.072 62.5

40.4 38.40 0.060 60.2 0.0605 60.1
38.56 0.061 59.9

42.0 40.03 0.062 57.0 0.061 56.75
40.38 0.060 56.5

* ml NaOH (1.0 N)
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C. Measurement of the pH of Intermediate Moisture Foods

1. Introduction

The overall purpose for this experiment was to determine

the effect of acidulant concentration on the pH attained in the

Hennican in preparation for microbiological studies using pH as a

parameter. It was first necessary to determine a reliable procedure

for determination of pH in intermediate moisture foods.

One method that can be used is the gran plot method in

which serial dilutions are made and the measured pH is plotted on

special paper. By extrapolation to zero dilution, the pH is estimated

to one decimal place. This method is used by several food companies

for dry foods.
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A question arises when different components are added

to a food system followed by serial dilutions with water. It is

possible that the time for equilibration and dissolution 
of acid in

an IM food could vary and thus some equilibration time would be needed.

In addition, the amount of water added could change the amount of

dissociation of the acid and thus affect pH as well. Preliminary

results showed that the pH changed slowly over 24-48 hr. This time

requirement is too long to be useful. Thus, another method was

needed for estimation of pH. Some alternate methods were tested.

2. Methods

a. Food system

For the preparation of the standard acidulant curves,

Hennican was prepared as reported in SectionIII, A. Table 1 gives

the composition, moisture content and aw of the systems used. After

mixing, the Hennican was divided up and various amounts of five

acidulants were added into the'food by mixing for 3 minutes. Acidulants

were adipic, citric, fumaric, lactic and phosphoric acid. All systems

were equilibrated at 40C for 24 hr. The pH was then determined by

four different methods.

b. pH measurement

The methods used for pH estimation were as follows:

(1) AOAC Method #14.022

The IM food in this study is not in any category

described in the A.O.A.C. book of Standard Methods (1970), but most

food companies producing IM foods use method #14.022. 10 g of Hennican

was blended with 100 ml of recently boiled,distilled and deionized
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TABLE 1

COMPOSITION FOR HENNICAN USED FOR STANDARD pH CURVE DETERMINATIONS

% weight of..component
Component a, 0.86* aw 0.88*

Peanuts 14.66 13.59

Freeze-dried chicken 14.66 13.59

Raisins 29.20 27.18

Peanut butter 3.86 3.60

Honey 1.58 1.47

Non-fat dry milk 10.63 9.90

H2 0 25.53 30.67

Moisture content
g H20/g solids 0.43 0.56

*aw (measured by VPM)
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water after cooling to 250C. After standing for 30 minutes, the

pH was measured with a standardized normal pH electrode such as an

Orion #910200. This method was only tested for the citric acid system.

(2) Direct measurement

Two types of pH electrodes were compared by

pushing them directly into the Hennican with no H20 added. The pH

was read after 3 min equilibration. The Orion electrode (#910200)

used was a typical semi-micro combination electrode. The second type

of electrode was a Beckman non-aqueous electrode (#39142) specially

designed to correct for osmotic gradients.

(3) Slurry dilution method

The measurement of pH in meat is described as

blending the meat with an equal weight of distilled H20 and the pH

is read on the slurry (Salisbury and Crampton, 1960). 5 g of H20

was added to 5 g Hennican. It was mixed to a slurry, then allowed

to equilibrate 24 hr at 40 C. The pH was measured with the Orion

electrode after equilibrating for 2 hr at 230C.

(4) Gran plot extrapolation

To 3 g of food, 1, 2 or 3 ml of distilled,

deionized water was added and stirred into the food to make a slurry.

The pH was read after 5 min equilibration. The pH was plotted

against the grams of H20 added on gran plot paper (100% volume-

corrected, Orion cat. #900093). The value at zero addition, which

is found by extrapolation from the measured pH values, is the pH

of the food. The pH electrode used was the Orion electrode.
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3. Results and Discussion

The results of the pH measurements are shown in Table 2.

The value obtained by direct measurement with the Beckman non-aqueous

electrode is considered the most reasonable, since the electrode is

designed to function under conditions similar to those defined by

an IMF system, namely a reduced water content. As can be seen from

Table 2, the variation of the other methods from the Beckman electrode

values is + 0.2 pH units and in most cases the range is + 0.1. This

shows that any of these methods could be used to measure the pH of

Hennican. The major consideration is that the standardized electrode

be given time to equilibrate in the sample prior to reading the pH.

When using the gran plot method the pH value is limited

to one decimal place of certainty because of the inaccuracy of extra-

polation. The other methods could also be limited to + 0.1 units

if the foods are a heterogeneous mixture which could vary in acid

composition. Table 2 shows the variation between batches of different

systems at aw 0.86. It was also found that the pH measurements with

the Beckman electrode on the same sample taken from different places

would give different values. For example, for one sample pH readings

of 4.78, 4.80 and 4.81 were found. This variation reflects the problem

of microenvironments which may cause unrealistic representation of

microbial activity or chemical reactivity.

It should be noted that the AOAC recommended method compares

very closely with other methods tested. This is probably due to the

buffering capacity of the ingredients in the food. This may not be

true in all foods, however. For instance, pH determinations of an
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TABLE 2

pH MEASUREMENT IN HENNICAN

Gran plot AOAC Slurry Direct - Orion Direct-Beckman
System % Acid aw: 0.86 0.86 0.88 0.86 0.86 0.86 0.86 0.88 0.86 0.88

Control 0.00 5.5 5.5 5.3 5.5 5.6 5.5 5.5

Adipic acid 0.10 5.4 5.5 5.3 5.5
0.25 5.3 5.3 5.3
0.50 5.0 5.0 4.9 5.2 5.1 5.1
1.00 4.7 4.7 4.9 4.9 4.9 4.9 4.8
2.50 4.7 4.6 4.6 4.5

Citric acid 0.10 5.4 5.3 5.40.25 5.3 5.2 5.3 5.2 5.2 5.3 5.1 5.2
0.50 5.0 4.9 5.1 4.9 4.9 5.1 4.9 4.9
1.00 4.8 4.6 4.7 4.6 4.6 4.7 4.6 4.5 4.5
2.50 4.2 4.1 4.1 4.3 4.1 4.0

Fumaric acid 0.10 5.2 5.3
0.25 5.0 5.0 5.0 5.1 5.1
0.50 4.7 4.7 4.7 4.8 4.8
1.00 4.3 4.3 4.3 4.4 4.4 4.3 4.3
2.50 3.7 3.7

Lactic acid 0.10 5.2 5.2
0.25 5.2 5.2 5.4 5.1 5.2
0.50 5.0 5.0 5.2 5.0 5.0
1.00 4.7 4.7 4.9 4.7 4.8 4.6 4.7
2.50 4.0 4.0

Phosphoric acid 0.10 5.2 5.3
0.25 5.1 5.1
0.50 4.9 4.9
1.00 4.5 4.4
2.00 4.2 4.2 3.8 4.0
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System % Acid aw: 0.86 0.86 0.88 0.86 0.86 0.86 0.86 0.88 0.86 0.88

Control 0.00 5.5 5.5 5.3 5.5 5.6 5.5 5.5

Adipic acid 0.10 5.4 5.5 5.3 5.5
0.25 5.3 5.3 5.3
0.50 5.0 5.0 4.9 5.2 5.1 5.1
1.00 4.7 4.7 4.9 4.9 4.9 4.9 4.8
2.50 4.7 4.6 4.6 4.5

Citric acid 0.10 5.4 5.3 5.4
0.25 5.3 5.2 5.3 5.2 5.2 5.3 5.1 5.2
0.50 5.0 4.9 5.1 4.9 4.9 5.1 4.9 4.9
1.00 4.8 4.6 4.7 4.6 4.6 4.7 4.6 4.5 4.5 0
2.50 4.2 4.1 4.1 4.3 4.1 4.0

Fumaric acid 0.10 5.2 5.3
0.25 5.0 5.0 5.0 5.1 5.1
0.50 4.7 4.7 4.7 4.8 4.8
1.00 4.3 4.3 4.3 4.4 4.4 4.3 4.3
2.50 3.7 3.7

Lactic acid 0.10 5.2 5.2
0.25 5.2 5.2 5.4 5.1 5.2
0.50 5.0 5.0 5.2 5.0 5.0
1.00 4.7 4.7 4.9 4.7 4.8 4.6 4.7
2.50 4.0 4.0

Phosphoric acid 0.10 5.2 5.3
0.25 5.1 5.1
0.50 4.9 4.9
1.00 4.5 4.4
2.00 4.2 4.2 3.8 4.0



IM dog food done in this laboratory show differences of close to

one pH unit with the AOAC giving the highest pH as would be expected

if the buffering capacity is low.

The standard curves of acid concentration vs. pH are

plotted in Figure 1 using the values obtained with the Beckman non-

aqueous electrode.

4. Summary and Recommendations

Various methods can be used for determining the pH of

intermediate moisture foods. Four methods were investigated and

all gave similar results. These included the standard AOAC procedure

for dry foods, a dilution test, the gran plot technique and a direct

reading with a non-aqueous electrode. It is recommended that the

use of a direct reading electrode would be as reliable as any other

technique and would take less than five minutes. Of course, the food

must be plastic enough to allow the penetration of the electrode.

If the food is drier, then the gran plot technique would be best since

the buffering capacity may not be known.

5. References

Official Methods of Analysis of the Association of Official Analytical
Chemists. 1970. Horowitz, editor. 11th edition. Washington,
DC. pg. 214.

Salisbury, G.W. and E.W. Crampton, editors. 1960. The Science of
Meat and Meat Products. W.H. Freeman & Co. pg. 234.
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VI

STUDY OF THE STORAGE STABILITY OF AN

IM HUMAN FOOD SYSTEM: GRANOLA BARS



VI. Study of the Storage Stability of an IM Human Food System:

Granola Bars.

A. Granola Bar Storage Study

1. Introduction

In Phase I of this contract a new IMF was developed based

on Granola cereal, marshmallows and peanut butter. A storage study

of the system at three aw's: 0.68, 0.75 and 0.85 in both direct mix

(DM) and freeze-dried rehumidified (FDR) systems was made to determine

the shelf-life of this product. No antioxidants were added since

the mechanism of deterioration was not known. The following tests

were proposed to be done on the Granola Bars:

a. Peroxide values

b. Warburgs

c. Non-enzymatic browning

d. Texture (Instron)

e. Organoleptic (compared to frozen taste control)

The use of the two methods of preparation would allow for determination

of the effect of sorption hysteresis on chemical deterioration.

2. Experimental procedures

a. System preparation

Granola bars were prepared by two methods, desorption

(direct mix - DM) and adsorption (freeze-dried rehumidified - FDR),

to obtain an isotherm and to determine the extent of hysteresis.

b. Method of Granola Bar preparation

(1) Weigh components into separate beakers.
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(2) Add marshmallows into the bowl of the Brabender

300 g mixer, knead on fast speed until the marshmallows become

taffy-like.

(3) Add non-fat dry milk.

(4) If water is added, add using a volumetric pipette,

continue mixing until a uniform mixture is obtained.

(5) Add the peanut butter and mix until uniform

(base mixture).

(6) Add the granola, mix until the granola is uniformly

distributed throughout the base (do not over-mix).

(7) Pat into a sheet approximately 3/4 - 1 cm in

thickness and cut into approximately 1.5 cm square pieces.

The composition of the direct mix systems are shown in Table 1, with

the measured moisture by GLC. The isotherm for the DM is plotted

in Figure 1. The aw's were determined by the manometric technique.

To prepare the FDR systems, granola bars were made

at aw 0.70 and freeze-dried for 46.5 hr (21 hr at room temperature,

300C, and then for the remainder of the time at a platen temperature

of 100 0F).

Two samples were weighed in glass weighing dishes

to record the weight lost during drying. After freeze-drying,

duplicate samples (2 squares each) were weighed in glass weighing

dishes and placed in desiccators (under vacuum) over a range of aw's

from 0 to 0.98. The weight change was recorded and the average

moisture content of the two samples was determined. The samples

were held in the desiccators for 6 days. The moisture content was
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TABLE 1

Composition Granola Bars

IMF System

Direct Mix

Basic Theoretical

Components % 0.68 0.75 0.82

Granola * 29.4 154.35 154.35 154.35

Marshmallows 29.4 154.35 154.35 154.35

Peanut butter** 31.4 164.85 164.85 164.85

Non-fat dry milk 9.8 51.45 51.45 51.45

K-sorbate --- 1.58 1.58 1.58

ml H20 --- 30.87 51.45 82.32

% Fat --- 15.28 14.56 11.73

% Protein --- 16.19 15.50 14.85

Salt solution for
rehumidification --- CuC1l2  NaCl CdCl2

* Pillsbury Co., Minneapolis

** Skippy Peanut Butter Co., Minneapolis
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then calculated correcting for the weight loss in the samples placed

in the dry desiccator using Equation 1.

moisture content = A+B C

B - B C

where A = weight gain
B = initial sample weight
C = g H20/g solids residual water

lost in drierite desiccator

The weight change was determined periodically and is shown in Figure 1.

The samples at aw 0.88 and below came to equilibrium in about 100

hr. The data used for the isotherm is the six-day reading (144 hr).

At 11 days the sample at aw 0.98 was high in surface bacterial growth

and showed leaking of water. The samples at 0.88 had some green

mold growth.

As can be seen in Figure 2, there is sufficient hysteresis

in the granola bar to incorporate that as a parameter in storage

studies. Table 2 shows the overall nutrient composition for a granola

bar at aw 0.74. Systems were prepared to three a w's and were stored

at 350C in 2 oz. jars (approximately 20 to 30 g per jar), covered

with two layers of Reylon PVC film, capped and sealed with 3M black

electrician's tape. Beakers of H20 were placed in the surrounding

chamber to prevent moisture loss. Samples were analyzed over ai:

period of 56 days.

c. Storage test procedures

The test procedures used are reported in detail in

Phase I, Final Contract Report, NAS 9-12560 except for the following

tests:

-213-



70
FDR

60 - 0.98

m 50-

0

40-
0

0 30
-r -0.88
T. - - 0.8220

2 . . * -0.75

10 - 0.61
- 0.52

- "0.44
0.330.12

0 30 90 150 210 270

TIME IN DESICCATORS (hours)

Figure 1. Equilibration Time for Moisture Adsorption of Granola
Bars at Various a 's.

-214-



ISOTHERM

50- GRANOLA BARS

0- FDR (6 days)
0 A DM (Mc by GLC)

0
0 30

cu

o 20-

10L

0 0.2 0.4 0.6 0.8 1.0
Aw

Figure 2. Moisture Sorption Isotherm for Granola Bars at 35°C.
DM - desorption, FDR - adsorption

-215-



TABLE 2

Nutrient Composition

Values for 100 g of Granola Bars ( 0.74)

IU ms mg mg ms
Component Vitamin Vitamin C Thiamine Riboflavin Niacin Iron

Granola -- .07 .04 -- .48

Marshmallows -- -- -- trace trace .44

Peanut butter -- -- .04 .04 4.45 .58

Non-fat dry milk 2.73 .64 .03 .16 .82 .06

Total 2.73 .64 .14 .24 5.27 1.56

moisture 8.99%
fat 26.50%
protein 14.13%
carbohydrate* 50.38%
cal/gram 5.0

*by difference



(1) Non-enzymatic browning

(a) 0.5 g sample suspended in 2.5 ml 10% trypsin

+ 20 ml pH 7.8 phosphate buffer

(b) Incubate system for 2 hr at 450C, 120 CPM

(c) Following 2 hr incubation, trypsin is

denaturated by adding 2 ml 50% (w/v) Trichloroacetic acid

(d) Add 0.1 g Celite (filter aid)

(e) System is filtered through Whatman #1 filter

paper

(f) O.D. 420 nm is measured on Coleman Jr. II

against 0.00 OD blank (blank has no sample added to trypsin solution,

but treated otherwise as regular samples)

(2) Instron texture test

(a) Samples were shaped into the dimensions

of 1.7 x 1.7 x 6 cm + .15 cm

(b) Samples were compressed on a Universal

Instron tester through an 8-wire grid to within 0.1 cm of the

original sample thickness at a rate of 0.5 cm/min

(c) A plot of force vs. distance was recorded

and 3 slopes (F (kg)/ AL/L) were calculated at total AL, 2/3 AL,

and 1/3 AL. From this an average slope was determined.

3. Results and Discussion

Tables 3 and 4 show the results of changes in aw and

moisture content during storage of the granola bar IM food product.

As seen, the aw of all the products decreased during storage. This

could be expected if the initial equilibrium was not complete and
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TABLE 3

Measured A - Granola Bars during Storage at 350C
w

Measured A Theoretical A
w w

0.68 0.75 0.82

Direct Mix
Initial 0.70 0.77 0.82

35 days storage(a) 0.64 0.71 0.81

56 days storage 0.65 0.73 0.78

76 days storage 0.64 0.70 0.76

FDR
Before FD 0.69 0.78 0.83

After 8 days
rehumidification 0.69 0.75 0.85

27 days storage 0.64 0.70 0.79

39 days storage 0.65 0.72 0.81

59 days storage 0.66 0.70 0.80

(a) storage at 350C
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TABLE 4

Moisture Content Changes

Granola Bar Storage Study

Mc = g H20/100 g solids

Aw  0.68 0.75 0.82

Direct Mix - Initial

VO 11.01 14.65 20.01

GLC 9.64 16.07 23.02

56 days storage (VO) 11.55 15.45 18.72

77 days storage (VO) 9.30 11.73 15.29

81 days storage (GLC) 9.86 13.73 15.83

FDR - Initial

GLC 11.83 15.61 19.76

39 days storage (VO) 10.71 14.57 20.68

50 days storage (VO) 10.30 12.62 19.82

54 days storage (GLC) 9.96 14.13 19.02

VO - vacuum oven 18 hr. @ 650C

GLC= gas liquid chromatography
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there was a transfer of water from the aqueous phase into the low

moisture ingredients such as the cereal and marshmallows. This was

accompanied by a decrease in moisture content for all samples which

could be due to water loss into the storage cabinet suggesting that

the jars were leaking. The data also show that hysteresis is negligible,

thereby negating the effect of method of preparation.

The redistribution and loss of moisture led to all products

becoming unacceptable within 30 days, as seen in Table 5. All

panelists commented on the loss of crispiness during storage which

in turn led to the product becoming dry-tasting or almost rubbery.

Eventually, all samples developed a bitter taste and had a slightly

rancid odor due to some reaction during storage. The increase in

toughness as measured by the Instron can be seen in Figure 3 for the

lowest aw systems (0.68), however, the other systems showed no

significant increase. The large change for the aw 0.68 samples may

be because of an accelerated chemical reaction or that at a moisture

content of around 9-10 g/100 g solids the plasticizing effect of water

becomes a minimum. With respect to the sorption isotherm this is the

region where capillary effects decrease and the isotherm flattens out.

Several tests were made to determine the cause of the

off-flavors developed in the product. Table 6 shows the results of

the oxygen absorption rate for up to 30 days. As seen, except for

the direct mix system at aw 0.82, all systems oxidized at a similar

rate of about 10 V 02/gram per day. In addition, as expected the

oxidation rate increased as aw increased. In contrast, the Hennican

systems studied in Phase I oxidized at close to 100 pl 02 /g per day.
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TABLE 5

Granola Bars @ 350C

Organoleptic Score Summary *

Average of 5 Scores

0.68 0.75 0.82

Day Taste control DM FDR DM FDR DM FDR

0 7 7 5 7 5 6 5

6 8 7 8 7

10 9 4 4 3

13 7 6 7 8

20 9 5 5 4

21 9 2 2 2

31 9 4 3 5

34 9 4 4 4

* A value of 4 or below for two successive
periods indicates unacceptability

-221-



0

0
u,

\ _

I I o -

9w

9- II

0 0 0

a oD<

1/oo 1 I

Figure 3. Increase in Toughness of Granola Bars during
Storage at 350C.

-222--222-



TABLE 6

GRANOLA BAR STORAGE STABILITY STUDY

OXYGEN UPTAKE RATE * - 350C

System Direct mix Freeze-dried rehumidified

a 0.68 8.16 6.72w

aw 0.75 10.91 10.4

a , 0.82 15.84 10.4

As measured by Warburg 02 uptake
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This suggests that rancidity of the fats may not be responsible for

the off-flavor. However, this slow oxidation does not mean that

rancidity cannot occur. The peroxide values for all the test systems

is shown in Table 7. As seen, after about 10-20 days the peroxide

values rise from a value of 1-2 to about a value of 5-6 and then

decrease again, which is typical of lipid oxidation. Again, this

is a small change as compared to the large increases found for Hennican

but only a small quantity of unsaturated fat has to oxidize to produce

off-flavors. This is most likely responsible for the poor flavor

and odor found in all the products after 10-20 days.

The slight bitter taste developed during storage may be

due to free fatty acids being formed from enzymatic hydrolysis of

the lipids. As seen in Table 8, there was an increase in free fatty

acids as compared to the frozen control. Also as would be expected,

there were more free fatty acids produced at the higher aw. This is

similar to what Acker (1969) has found for enzymatic hydrolysis in

cereals with respect to aw . This could account for the bitter flavor

found, although not enough samples were available to test this during

the whole storage period.

A bitter flavor can also be developed in an IMF product

if non-enzymatic browning occurs. The results of the NEB determination

are shown in Table 9. As seen, an increase in browning did occur,

however, in the first 20 days when the product became organoleptically

unacceptable only the direct mix at aw 0.82 had a large increase and

this was the most acceptable product. Thus browning should be ruled

out as a major deterioration reaction.
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TABLE 7

Granola Bar Storage Study 35C

Run 1

Peroxide Value (meq/Kg fat) *

Theoretical Aw

0.68 0.75 0.82

Day DM FDR DM FDR DM FDR

0 0.77 -- a 1.05 1.32 1.40

3 -- -- 1.07

6 -- -- 1.95

10 1.33 1.85 --

13 -- -- 1.99

17 1.79 2.75 3.36

20 1.77 0.45 1.99

27 2.55 5.64 2.67 6.64 1.90

31 4.53 5.09 6.87

35 2.76 6.76 4.83

43 3.67 4.17 6.36

50 6.31 3.75 3.11

60 4.12 3.65 4.40

a) No color change when 1% starch solution added as an indicator
* Average of two values
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TABLE 8

IMF Storage Study

Granola Bars 350C

Free Fatty Acids

Theoretical A DM FDR Frozen control
51 days 39 days

0.68 91.01 95.85 ---

0.75 95.70 118.70 82.42

0.82 105.16 136.17 ---

Note: Samples not done in duplicate
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TABLE 9

GRANOLA BARS AT 350 C

NON-ENZYMATIC BROWNING

Absorbance at 420 nm

Days in DM FDR DM FDR DM FDR
storage 0.68 0.68 0.75 0.75 0.82 0.82

0 0.130 0.155 0.127 0.170 0.105 0.160

10 0.145 0.180 0.140 0.182 0.150 0.157

13 0.135 0.164 0.135

17 0.155 0.210 0.142

20 0.182 0.200 0.170

27 0.153 0.205 0.188 0.195 0.175 0.205

32 0.225 0.205 0.188

35 0.180 0.240 0.170

59 0.248 0.220 0.195
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Lastly, the resulting unacceptability could be due to

microbial growth. Table 10 shows that the counts were very low

initially and did not increase during storage.

4. Summary and Recommendations

Overall, the granola bar, although initially highly acceptable,

is extremely unstable. In 10-20 days all panelists rated it undesirable

due to a dry--rubbery texture, a bitter flavor and a metallic, rancid

odor. This is most likely due to enzymatic reactions causing free

fatty acid production and oxidation of lipids. No antioxidants were

used which could inhibit the latter reaction,but to inhibit the lipase,

a heat treatment would be needed. The real problem is moisture redis-

tribution which makes the product dry and rubbery tasting. No solution

for this is possible unless a highly impermeable barrier to water could

be sprayed on the cereal. None are available that can be used on foods.

The recommendations for further work on this product as

well as for IMF in general are:

a. Make sure that all components are blanched to prevent

enzymatic activity.

b. Incorporate antioxidants to prevent oxidation of lipids

or use a low oxygen atmosphere.

c. Keep the aw as low as possible to minimize oxidation.

d. Use a highly impermeable moisture barrier for the

package as moisture loss will cause the product to become hard

and unacceptable.

5. References

Acker, L.W. 1969. Water activity and enzyme activity. Food Technol.
23: 27.
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TABLE 10

TOTAL PLATE COUNT ON GRANOLA BAR AT 350C

Initial a counts/gram

Direct mix (27 days)

0.70 2 x 102

0.77 2.x 102

0.82 3 x 102

Freeze-dried
rehumidified (21 days)

0.69 5 x 102

0.75 2 x 102

0.85 2 x 102

Initial control 3 x 102
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VII

THE ACCELERATED SHELF-LIFE TESTING OF AN

INTERMEDIATE MOISTURE FOOD
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VII. The Accelerated Shelf-Life Testing of an Intermediate Moisture

Food

A. Introduction

In the production of any new food one important aspect is

the knowledge of the shelf-life. This life must at least exceed the

minimum distribution time required from processor to the consumer.

The shelf-life is controlled by:

1. The components of the system.

2. The process used.

3. The package permeability to light, moisture and gases.

4. The time-temperature-relative humidity distribution

during transportation and storage.

The processor must have a knowledge of all these factors as well as

a knowledge of the critical modes of failure of the food. With this

information, the processor can then choose the best systems to maximize

shelf-life or even put an open date on the product indicating the

maximum high quality life of the product.

Unfortunately, little or no information is available for the

processor since much product development work has not considered the

physical-chemical laws which could be used to predict the modes of

deterioration and even the shelf life. Oswin (1945) was the first

to publish methodology which could be used to predict the shelf-life

of a product. He developed an equation to predict the rate of loss

of moisture from cigarettes in various packaging films. Charie et al.

(1963) extended some of this work to food products. In a major effort,
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Mizrahi et al. (1970a) utilized these schemes to develop a simple

mathematical model to predict the change in moisture of a dehydrated

food during storage as well as the extent of a chemical reaction,

namely non-enzymatic browning. Their equations could be used to

determine what packaging film should be used for a given desired

shelf-life. What was needed was the rate of chemical deterioration

of the product as a function of environmental conditions, the maximum

extent of reaction that could be tolerated and the external conditions.

This work was further extended to other systems (Labuza et al., 1972;

Karel et al., 1971). Davis (1970) has also done similar work for

foods and Harrington (1973) extended it to storage of seed.

Simon et al. (1971) introduced the same concepts in the

prediction of the shelf-life of a product which undergoes oxidation

(freeze-dried shrimp). Quast and Karel (1972a, 1972b) extended this

further to the study of potato chips which both adsorb water leading

to sogginess and oxidize leading to rancidity. These latter studies

showed the complexity of the problem but indicated short cuts for

the solution.

Salwin and Slawson (1959), Hokoji et al. (1969) and Charie

et al. (1963) showed how to calculate moisture transfer between

ingredients in a dehydrated food mix and use it to predict stability.

The major problem was that the ingredients must all be kept at or

near the monolayer to prevent deterioration. Labuza (1968, 1971)

has reviewed the area of the amount of moisture in a food in terms

of stability.
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Much work has been done in predicting the shelf-life of frozen

foods during distribution (Gaudagni, 1968). Olley and Ratkowsky

(1973) have studied the time--temperature distribution during transport

using special indicators similar to defrost indicators (Schoen and

Byrne, 1972). In order to predict shelf-life, however, knowledge

of the mode of deterioration as a function of temperature is needed.

Some data has been collected by Dyer (1968) for fish, Jul (1968)

for meat and Kramer (1974) and Olson (1968) for various frozen foods.

Rutgers (1970) published a major survey of the shelf-life of various

foods including refrigerated, frozen and dried, which also gives an

idea of the modes of deterioration.

Even if all this data can be collected, it is usually a

requirement that the shelf-life be verified before the product goes

to market. This imposes a burden if the product has a long shelf-

life so that some form of acceleration of deterioration would be

desirable. With dehydrated foods, as was shown by Mizrahi et al.

(1970b), the water content can be used to control the reaction.

Since most reactions increase rapidly above the monolayer moisture

value, holding the food in the IMF range should increase the rate

of reaction. However, as shown by Chou and Labuza (1974), above a

certain aw the rate of rancidity decreases in certain systems. In

Section IV it was shown that for IMF systems the maximum rate of

browning occurs below the optimum moisture value. With respect to

vitamin stability, however (Section II, A.), an increase in aw increases

the rate significantly. What is needed is data to show the rate of

reaction as a function of aw so that it can be applied for shelf-life
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predictions.

Many researchers have used the oxygen bomb technique which

uses high oxygen pressure to accelerate rancidity. However, as shown

by Labuza (1971), the oxidation rate does not change significantly

at any level above about 5% oxygen. The major factor that accelerates

the reaction is the high temperature used during the experiment.

Mizrahi et al. (1970b) used high temperature in conjunction with high

moisture to accelerate browning of cabbage. Different reactions

are affected to different extents by an increase in temperature.

This is usually measured by the Q10 of a reaction, the increase in

rate for a 100 C increase, or the activation energy which is the true

function since Q10 is related to Ea by:

log Q 1 0 
= 2.3 E

a) CT + 103

where Ea = activation energy in Kcal/mole

T = temperature in OK

Table 1 lists typical activation energies for food deteriorative

reactions and illustrates the Q10 over two temperature ranges. This

data could be useful in shortening shelf-life experiments.

Even though high temperatures do accelerate chemical reactions,

one must be careful since at high temperature the mode of deterioration

may change if one reaction is accelerated more than another as seen

in Table 1. In addition, fats may melt in the product and cause other

changes. However, use of high temperature is the easiest way to

accelerate shelf-life testing. Labuza (unpublished) has proposed

that if a plot of 1/LOG (shelf-life) vs. 1/ToK gives a straight line,

then the mode of deterioration is not changing. At least 3 points

-233-



TABLE 1

EFFECT OF ACTIVATION ENERGY ON Q10

Ea Kcal/mole 80oF to 980 F 212oF to 2300F

Q" Q10 10

5 1.31 1.19

10 1.72 1.42

15 2.26 1.70

20 2.97 2.03

30 5.11 2.88

40 8.74 4.10

50 15.03 5.83

TYPICAL ACTIVATION ENERGIES

Kcal/mole

Diffusion controlled 0 - 8
Enzyme reactions 10 - 15
Hydrolysis 15
Lipid oxidation 10 - 25
Non-enzymatic browning 25 - 50
Spore destruction 60 - 80
Vegetative cell destruction 50 -150
Protein denaturation 80 -120
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are needed, about 5 to 100 apart. Thus, 45 to 300C would be a useful

range for accelerating most reactions and also can be used to determine

the major mode of deterioration. However, these presumptions have

not been adequately tested.

The purpose of this study is to test the usefullness of using

high temperature to accelerate the deterioration of an IMF product,

Hennican. By using three temperatures, it should be possible to

determine whether the mode of deterioration changes with temperature.

In addition, it was proposed to test the usefullness of a special

packaging film (American Can Co., Maraflex 7 Oxygen Scavenger Web)

in preventing rancidity.

2. Methods

a. Systems preparation

Hennican, aw 0.85 with the composition as shown in

Table 2, was prepared following the procedure reported in the final

report NAS 9-12560, Phase I, March 27, 1972--March 17, 1973, pg. 125,

239. Additives were added at the following levels:

(1) BHA - 100 ppm (based on % fat)

(2) BHT - 100 ppm (based on % fat)

(3) Citric acid - 0.1% (based on solids)

(4) Ascorbic acid - 2 mg/g Hennican

(5) K-sorbate - 0.3% (based on solid weight excluding

H20 and non-fat dry milk)

The Hennican was rolled flat and cut into pieces with

the dimensions of 1.7 x 1.7 x 0.6 cm.
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TABLE 2

COMPOSITION OF HENNICAN aw 0.85

FOR SHELF LIFE STUDY

Component % (a)

Peanuts 15.44

Freeze-dried chicken 15.44

Raisins 30.87

Skippy peanut butter 4.08

Honey 1.67

Non-fat dry milk 11.24

H20 21.26

(a) Final Report, NAS 9-12560, March 27, 1972--March 17,
1973. Phase I. pg. 125, 239.

-236-



b. System storage parameters

The samples were prepared and stored at 25, 35 and

450C. One-half were sealed into cans with air as the environment,

while the other half were sealed in the special oxygen scavenger web

described in the next section.

c. Oxygen scavenger packaging system

(1) Film description

A new film developed by American Can Company,

Maraflex 7F Oxygen Scavenger film, was used to store Hennican in

an "oxygen-free" environment. The laminated film is composed of

the following layers (outside to inside surface); polyester, adhesive,

foil, surlyn, catalyst (palladium), surlyn. The pouches containing

the product are flushed with a gas mixture of 8% hydrogen and 92%

nitrogen to minimize the residual oxygen in the pouches. The oxygen

reduction activity works on the basis of one molecule of 02 combining

with two molecules of H2 . The 02 and H2 travel through the inner

layer of surlyn and react in the presence of the catalyst to form

H20. The H20 remains trapped between the two surlyn layers. There-

fore, the system can handle 4.0% 02 when there is 8% initial H2 in

the pouch. This total of 4% 02 includes 02 in the package headspace

immediately after packaging, 02 dissolved in the product which may

shift to the headspace after packaging, and 02 which may permeate the

packaging material during storage. A low initial residual amount of

02 (approximately 1%) in the package headspace is the most favorable

condition for the packaging to be most effective.

-237-



(2) Sealing conditions

To test the effectiveness of the sealing conditions,

samples were sealed in pouches 9 x 17 cm. The pouches were sealed

on a PAC Vac model 12V sealer using the following settings:

(a) Sealing selector switch low

(b) Dwell timer set at 4 on 0-10 scale (seal

bar is down for a total of 7 seconds)

(c) Seal timer set at 3 on 0-10 scale (equal

to 3 seconds with impulse heat on)

(d) Vacuum timer at 7 on 0-10 scale (3 sec.)

Only one flushing of the pouches with the special gas mixture was

done on the sealer. To check the initial % 02 in the sealed pouches,

a gas chromatograph analysis of the pouch headspace was done. A

standard for 1% and 2% 02 was made by calculating the volume of the

pouches filled with only N2 by using the H20 displacement method.

The required volume of 02 was injected into the pouch using a syringe

and the injector site immediately sealed with 3M black electricians

tape. The injector site was a crossmark of the tape to minimize

leakage. The ratio of the 02 to N2 peak areas was calculated using

the values printed by the Perkin Elmer computerized Electronic Integrator.

The sealing condition of vacuum setting at 7 and gas setting at 3

yielded a residual % 02 level of 1.15% to 1.20% in the test samples.

Since a lower value is desired, a preflush technique was found to

be needed.

The following conditions were used as reported

in Table 3:
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(a) M = one flushing with special gas mixture

(92% N2 , 8% H2) on sealer only

(b) F = pouches containing samples were placed

in a desiccator, evacuated, flushed with special gas mixture,

evacuated, flushed and final flushing done on the sealer

(c) H = pouches were flushed for approximately

20 seconds with the gas mixture by means of a piece of tubing

connected to the gas tank and the tubing used as a "hose" to

flush the interior of the pouches. A final gas flushing was done

on the sealer.

The results are shown in Table 3. As can be seen,

using method F gives the lowest residual oxygen levels in the pouches.

These settings were used in 'the Hennican storage study for the low

oxygen system.

d. Test methods

The methods for the food deterioration tests used are

stated in the Final Report, Phase I, NAS 9-12560, March 27, 1972-

March 17, 1973. The following tests were run:

(1) Peroxide value (AOCS Method Cd 8: 53)

(2) Lysine (Section IV)

(3) Non-enzymatic browning (modified Choi et al.

(1949) by Labuza (Contract NAS 9-10658).

(4) Organoleptic - score sheet on Table 4 of this

report (a panel of eight people was used)

(5) Ascorbic acid. The procedure in Section II, B.

was used with the following modification in sample preparation:
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TABLE 3

EFFECT OF GAS FLUSHING AND MACHINE SETTING ON RESIDUAL 02

Method of Flushing * Setting on Machine * Residual % 02

M V 1, G 3 1.15

M V i, G 3 1.20

M V i, G 3 1.05

M V 1 , G 3 0.60

M V 1 , G 1 0.70

F V 1, G 3 0.03

F V 1, G 3 0.05

H V 1, G 3 0.57

H V 1, G 3 0.55

* See text
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TABLE 4

Sample #

Product

Date

Appearance Aroma Flavor Texture Overall

Excellent

Good

Fair

Poor

Unacceptable

Comments:
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(a) Weigh 15 g Hennican into tared 8 oz.

blender jar

(b) Bring up to 100 g with extracting solution #1

(c) Blend at high speed for 1 min using an

Osterizer blender

(d) Pour approximately 50 ml of the blended

sample into a 125 ml Erlenmeyer flask containing 1 g Celite

(e) Filter, using vacuum, through Whatman #1

filter paper, approximately 10 min

(f) Using a volumetric pipette take 10 ml of

the filtrate and add 10 ml of extracting solution #2 and

titrate with the standardized 2,6 Dichloroindophenol dye

(6) Texture measurement

A new method was devised for toughness determination

as follows:

(a) Instron Universal Tester Model TM

(b) OT MS - Ottowa Texture Measuring System

wire grid

(c) Compression rate 0.5 dm/min with a chart

speed of 5 cm/min

(d) Duplicate samples of uniform size (1.7 x

1.7 x 0.6 cm)

(e) Sample compressed to 1 mm distance from grid

(f) Data collected is Kg force necessary for

compression.
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3. Results and Discussion

The results of each individual test will be discussed

separately. Overall, however, as would be expected deterioration

proceeded faster in air than in the low 02 system and the rates of

deterioration increased significantly with temperature. Moisture

content checks of the samples at 25 and 35
0C showed the packages to

be adequate (Table 5). Therefore, no interference with a change

in moisture occurred during storage.

a. Peroxide value: rancidity

As seen in Table 6, the data illustrate that the

pouches with the oxygen-free environment have maintained a protective

action against lipid oxidation. This protection was maintained even

after 3 months storage at 350 C. Lipid oxidation is occurring in the

systems stored in air (cans) but as indicated by the low peroxide

values, the rate is very slow. Up to the times indicated, there is

no apparent difference in peroxide values among the samples stored

in air at the three different temperatures, implying that the anti-

oxidants added are effective in this study. Figure 1 shows the data

for peroxide value in Hennican stored in vacuum sealed foil pouches

at 350C from the previous contract Final Report, NAS 9-12560, Phase I.

As seen, at about 50 days the PV increased rapidly and the product

became rancid. This confirms the effectiveness of the antioxidants.

However, as will be discussed later, rancidity was not the mode of

deterioration at 35 and 4500C. Thus, samples are only being retained

at 250C to see if there is a change in deterioration mode. It should

be noted, however, that if rancidity were a problem this new pouch
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TABLE 5

MOISTURE CONTENT CHANGE OF HENNICAN DURING STORAGE

Mc = g H20/g solids

250 C 250 C 350C 350 C
Storage (days) can pouch can pouch

Initial 0.38 0.38 0.38 0.38

29 0.38 0.39

31 0.38

32

33 0.38

34

50 0.35 0.35

54 0.38

55

56 0.38

Method: vacuum, 18 hr, 700C
samples done in duplicate in glass weighing dishes

-244-



Figure 1. Effect of Storage Time at 35
0C on the Peroxide

Value of Hennican Storage in Vacuum Pouches.
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TABLE 6

HENNICAN SHELF-LIFE STUDY
PEROXIDE VALUE

meq/Kg fat

25C 35C 45C

DAY AIR N2/H2  AIR N2/H 2  AIR N2/H2

0 N* N N N N N
2 0.39 N
5 0.88 2.08 N 3.12

10 4.06 N 3.56
15 3.80 N 3.72
20 2.62 N 2.27 N 2.48
25 4.34 N 5.05
30 4.52 N 2.93 N 4.38 N
35 3.54 N
40 3.09 N
45 3.00 N 2.40 N
50 4.03 N 3.28 N
60 4.03 N
65 4.24 N 4.09 N
70 1.67 N
75 3.03
80 3.79 3.31
85 3.93
90 3.23

* no detectable peroxides
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system would be an adequate way to prevent the reaction.

b. Ascorbic acid

As illustrated in Figure 2, ascorbic acid degraded

rapidly during storage of Hennican. It can also be seen that ascorbic

acid is less stable in air than in the N2 /H2 pouch. Also the rate

of destruction of ascorbic acid in both air and the N2/H2 systems

was accelerated by an increase in temperature.

Table 7 compares the half-lives and the activation

energies of ascorbic acid loss under the different storage conditions

studied. At 250 C, the rate is approximately seven times less in the

N2/H 2 system as compared to the air system. At both 35 and 450C,

there is about a three-fold decrease in the rate of destruction of

ascorbic acid in the N2/H2 systems as compared to air. Even though

the special pouch (Maraflex 7F Scavenger Web) is more protective

against ascorbic acid degradation than the air system, its effective-

ness is reduced with this model food at the higher temperatures.

When the data was plotted on an Arrhenius plot as seen in Figure 3,

the activation energies calculated were not the same indicating that

some mechanism change of ascorbate destruction is occurring in the

N2/H 2 system. This may indicate that the residual oxygen which is

being used up in the reaction may have become limited or is diffusion

limited. The activation energy for ascorbic acid loss of about 18-20

Kcal'is comparable to the values obtained in the model system study

(Section II, A.), however, the half-life was longer. The half-life

was also almost twice that found for the Hennican prepared for Section

II, B. at the same aw . In that study a half-life of 36 days was
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Figure 2. Destruction of Ascorbic Acid in Hennican as a Function
of Temperature Stored in Two Atmospheres.

-248-



0.5- 45 *C 35O 23 OC

0.2-

* AIR

- 0.1

S0.07 -

.: 0.05

ASCORBIC ACID

3.1 3.2 3.3 3.4

0K' x 103

Figure 3. Arrhenius Plot for Ascorbic Acid Destruction in
Hennican Stored in Air and in the N2/H2 Atmosphere.
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TABLE 7

ASCORBIC ACID RESULTS

HENNICAN SHELF LIFE STUDY

Temp (oC) System Days Q1 0 (from Ea plot)

25 AIR 10
1.70

35 AIR 5
1.67

45 AIR 2

25 N2/H2  70
3.74

35 N2 /H2  18
3.44

45 N2/H 2  6

Ea = 9.93 Kcal/mole in air

Ea = 24.04 Kcal/mole in N2/H 2

Ea = 18 + 2 Kcal/mole (literature)
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found at 250C for the product sealed under vacuum in foilpouches.

This indicates that at least with vitamin C destruction, the extra

protection of a catalyst-type pouch was necessary. S aling the

product in air alone is totally inadequate.

Overall, the data in air indicate that significant overruns

of ascorbate would be necessary if the product is to supply a signifi-

cant part of the RDA (60 mg). If 100 g of product has 200 mg of

ascorbate, then at 250C in one month the product is at 1/3 the RDA

for an average man and in two months the product has less than 5%

of the RDA. The pouch system at low 02 would take about 7 months

to reach 1/3 of the RDA. Thus, the cost of packaging could be

balanced out by greater nutritional value. Otherwise, an overrun

of six times more ascorbic acid would be needed to supply 1/3 RDA

at the end of two months. The cost of packaging in this case could

be less than the vitamin C costs on an industrial scale. The data

also show that from a nutritional standpoint, ascorbic acid loss would

be a major mode of deterioration if a nutritional claim were made

for the product. These results further bear out the previous recommenda-

tions that ascorbic acid either not be added or be added in some type

of protective coating. The data also show that using a high temperature

shortens the required test period to under one week.

c. Non-enzymatic browning

In this storage study, as illustrated in Figure 4,

non-enzymatic browning detected as pigment formation, increased with

temperature but was slightly lower in the N2/H2 atmosphere. An

increased rate and a greater amount of pigment formed in the air
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Figure 4. Effect of Storage Temperature and Atmosphere
on Non-Enzymatic Browning of Hennican (aw 0.86).
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system may be due to some lipid oxidation occurring in those systems

even though peroxide values were low. Lipid oxidation supplies

carbonyl groups which could interact with the amino groups of amino

acids leading to the production of brown pigments. The increased

rate of ascorbic acid degradation in the air system could also cause

a larger amount of pigment formation since it can eventually lead to

the formation of furfurals which will react with amino compounds to

produce brown pigments.

The product is browning at a significant rate as

was found in Hennican in the previous contract (NAS 9-12560, Phase I).

In that study at aw 0.83, 350 C, in a product to which antioxidants

were added and which was held in a vacuum sealed pouch, after 50

days the A4 2 0 was 0.7 starting from a value of 0.2 showing an increase

in browning of 0.5 units. In the present study, the AB is only 0.2

to 0.3 units, about half the deterioration. The lower initial value

shows that a better product was made with a lower amount of either

reducing sugars or browning precursors. The increase over the same

time period for the 250 C is less than 0.1 browning units. As is well-

known, the rate of deterioration is less if a better initial quality

exists.

Table 8 shows the time for the product to reach

unacceptability on a browning basis from both a chemical and a visual

standpoint. An absorbancy of 0.35 at 420 nm was used as the chemical

index of unacceptability since at this point the product in air at

350C was rated visually unacceptable by the panel. The trend exists

that the samples in air reach a chemical and visual cut-off before
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TABLE 8

NON-ENZYMATIC BROWNING - RESULTS

Temp (oC). System Visual Shelf- Days to Q 10 (from Ea plot)
Life, Days Reach B = 0.35

25 AIR NR 145*
3.13

35 AIR 30 30
2.91

45 AIR 7 10

25 N2/H2  NR 245*

3.74
35 N2/H2  124 45

3.44
45 N2/H2  36 15

NR = not reached
* = projected from data Ea = 20.8 Kcal/mole in air

Ea = 24 Kcal/mole in N2/H2

E = 20-25 Kcal/mole (literature)a



the samples in the N2/H 2 systems, as would be expected. As seen from

Table 8, browning causes the product to become rapidly unacceptable

and it would thus become the major mode of chemical deterioration

other than ascorbic acid loss. The use of an accelerated temperature

is very useful in this case since browning is so slow. This should

be verified with the visual test samples. In the 02-free environment,

the accelerating factor at 450 C is about 16 times as compared to room

temperature. This means the study could be carried out in less than

two weeks. The activation energy also is comparable to that found

from the literature and is only slightly changed in the oxygen-free

environment.

A further index of browning deterioration is the

toughening of a product during storage. Figure 5 illustrates the

increase in toughness of the product with an increase in storage

time and temperature. Toughness or Kg of force was measured by

compressing pieces of uniform size on an Instron Universal tester

using an 8 wire grid. There appears to be little difference in

toughness detected by this method for the product stored in air vs.

the product stored in the N2/H2 atmosphere at a given temperature,

although a difference occurred in the extent of browning. Therefore,

toughening may be a different mode of deterioration.

Table 9 lists the days for Hennican to reach an

Instron value of 8.3 Kg. An Instron value of 8.3 Kg was chosen as

the mechanical index of unacceptability. This was the mechanical

toughness measurement at the time the panel rated the 350C product

unacceptable on a toughness basis as recorded in Table 9. The
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Figure 5. Increase in Toughness in Hennican Stored at
Three Temperatures and in Two Atmospheres.
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TABLE 9

HENNICAN STORAGE STUDY

TOUGHNESS RESULTS

Temp (oC) System Days to Reach Unacceptability Q1 0
Organoleptic Instron

25 AIR NR 162
3.22

35 AIR 63 63
3.00

45 AIR 17 21

25 N2/H2  NR 162
3.22

35 N2/H2 84 63
3.00

45 N2 /H2  36 21

NR = not reached
Ea = 21.3 Kcal/mole

-257-



activation energies of toughening and non-enzymatic browning are

similar (toughening having an Ea of 21.3 Kcal/mole and non-enzymatic

browning having an Ea of 20.8--24 Kcal/mole) which could indicate

that toughening is a result of non-enzymatic browning. However, when

comparing the organoleptic evaluation to Table 8 it is obvious that

there is not a direct correlation with visible browning. Except for

the 350 C data in the low oxygen atmosphere, the visual browning occurs

faster. Using the chemical indices would also indicate that browning

occurs more rapidly than does toughening, thus it is the major mode

of deterioration.

Table 10 contains the data for the change in available

lysine content in Hennican at 25 and 350C. No samples were available

at 450C. Lysine would be considered the most sensitive amino acid

with respect to browning because of the e-amino nitrogen group.

At 250C, after an initial decrease of about 25% in

6-10 days, the values do not seem to be decreasing any more. At

350 C, however, in around 10 days the decrease is about 50%. After

that the lysine is going down only slowly. The Q10 based on

available lysine is only 2 as compared to the 4 or 8 for browning

based on this preliminary data. This suggests that browning alone

cannot be used for determination of nutritional losses of proteins

since it involves a much more complex mechanism. What value the

lysine loss has with respect to nutritional value from a biological

standpoint remains a question.

4. Summary and Conclusion

The results of the major tests as summarized in Table 11,
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TABLE 10

AVAILABLE LYSINE CONTENT OF HENNICAN IN STORAGE

mg Lysine/16 mg Protein Nitrogen

250 C 350C
Day can pouch can pouch

0 4.88 4.88 4.88 4.88
4 3.75
6 3.00 4.50
7 3.91

10 3.25
13 3.50
15 2.25 3.25
17 3.63
18 2.25 2.63
20 4.00
21 2.50 2.00
24 3.38 2.25 2.38
27 3.50
29 2.00 1.88
32 3.22
34 2.88
36 1.25 2.13
39 2.63
43 3.25
44 1.72 2.13
52 2.50
55 1.58 1.75
58 3.38
60 3.06
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TABLE 11

OVERALL EVALUATION: HENNICAN SHELF-LIFE STUDY

DAYS TO REACH UNACCEPTABILITY

Subjective Tests Objective Tests Vitamin C
Temp (oC) System Visual Toughening Overall Non-Enzymatic Instron Half-life

Browning Browning B = 0.35 8.2 Kg

25 AIR NR NR NR 145 162 10

35 AIR 30 63 30 30 63 5

0 45 AIR 7 17 9 10 21 2

25 N2/H 2  NR NR NR 245 162 70

35 N2 /H 2  124 84 82 45 63 18

45 N2/H2  36 36 30 15 21 6

NR = not reached



indicate that browning is the major mode of deterioration in Hennican

with respect to organoleptic qualities, since the results bear closely

with the overall organoleptic shelf-life. Use of an accelerated

temperature did not seem to change the mode of deterioration and

decreased the time necessary to evaluate the rate by over 15 times.

This verifies that high temperature can be used to accelerate shelf-

life testing. In the present product, lipid oxidation was much slower

and did not contribute to deterioration. From a nutritional stand-

point, vitamin C degraded rapidly as was found in previous studies.

From the standpoint of protection, these studies also suggest that

intermediate moisture foods be packaged in a low oxygen environment

as it significantly increases shelf-life. With respect to visual

browning, the use of the American Can Co., Maraflex 7F Oxygen

Scavenger Web increased the shelf-life by a factor of over 4 to 5

times. This would suggest that the higher cost could be borne out

by the longer shelf-life achieved. The factor is only about 3 times

on the overall organoleptic basis, but that is still significant.

The overall data, however, do not indicate as good a correlation

between the chemical and organoleptic data. Until the subjective

data is complete at 250C so that a verification of the Arrhenius

plot can be made, it may still be premature to suggest 450C as an

acceleration temperature. The general recommendations for processors

based on this study are:

(1) The use of high temperature to accelerate

deteriorative reactions to shorten shelf-life testing
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(2) The use of high quality ingredients and

antioxidants retards rancidity

(3) Vitamin C stability is very poor in intermediate

moisture foods

(4) A low oxygen environment significantly increases

product shelf-life and would be worth the expense to create if

shelf-life is needed.
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